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Abstract

Using cash �ows from a large sample of buyout and venture funds, I show that private eq-

uity (PE) distributions predict returns in the industries of funds' specialization. My tests

distinguish timing skill from reactions to market conditions and spillover e�ects of PE activ-

ity. Fund managers foresee comparable public �rms' earnings but sell at the industry peaks

only if they have performance fees to harvest. These results have implications for manager

selection and improve understanding of PE fund returns and the PE role in capital markets.
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I. Introduction

Although private equity (PE) funds invest in private companies, their investment out-

comes depend crucially on public capital markets: a fund's entry or exit valuation is a�ected

by comparable public market prices, regardless of whether the transaction is public. Prior

research shows that PE managers (general partners [GPs]) change policies of both investee

companies and the industries in which they operate (see, e.g., Bernstein et al., 2016); and

that GPs vigorously respond to changes in market conditions (see, e.g., Axelson et al., 2013).

Relatively little is known, however, about how informed GPs are about the valuations of pub-

lic equities. Amid the growing evidence that GPs' control over PE fund cash �ow schedules

extracts agency bene�ts (see, e.g., Robinson and Sensoy, 2013), it remains poorly understood

whether the fund investors also bene�t from this distinctive feature of PE contracts. Since

GPs oversee dozens of companies as active board members and specialize in certain types

of businesses, the timing of entry and exit decisions based on this informational advantage

(relative to public market prices) could create value for their fund investors.

This paper shows that GPs do appear to learn important private information about

the valuation of certain public equities and that the potential gains to fund investors from

delegating fund investment timing to GPs are substantial. For the typical PE fund, the con-

tribution from timing of the industry valuation cycle to the life-time total return is as large as

the contribution from holding the asset. Using the Burgiss sample of 941 US-focused buyout

and venture funds incepted between 1979 and 2006, I show that an inter-quartile increase

in the rate of funds' distributions to investors predicts approximately 6% lower 12-month

returns for the fund's primary S&P500 sector incrementally to other predictors. I develop

a simple and robust fund-level metric of a GP's timing track record that conveys valuable

information about a fund's future propensity to exit close to industry highs. For tighter

control of variation in exit conditions, I conduct simulations showing that this predictability

vanishes outside GPs' industries of specialization and relates to the industry earnings news.

Indirect anecdotal and survey evidence is consistent with market timing ability of PE
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managers.1 To date, however, there has been no direct support for superior information-

based market timing by GPs. Ball et al. (2011) conclude that venture GPs simply react

to market conditions; Lerner (1994), Kaplan and Strömberg (2009), and Guo et al. (2011)

do not attempt to disentangle superior information-based market timing from reacting to

entry/exit conditions, time-varying expected returns, and causal e�ects of PE activities on

public company valuations. Neither do Acharya et al. (2013) and Jenkinson et al. (2018)

examine this channel with deal-level samples.

This paper shows that, with respect to PE fund exits, 52�69% of the subsequent dip in

public benchmark returns can be attributed to superior information. The remaining 31�

48% is due to variation in market conditions (i.e., �pseudo timing� as per Ball et al., 2011;

Schultz, 2003). However, when GPs do not stand to cash-in carried interest, they have little

incentive to time the market, and PE fund distributions do not have incremental predictive

power relative to publicly available (non-PE) predictors. My inference is robust to spatial

dependence in calendar time and to exclusions of particularly dramatic market episodes

and certain fund groups. Meanwhile, the data are inconsistent with PE exits causing lower

earnings at comparable public �rms or temporarily depressed valuations thereof. I �nd that

much of the variation in fund returns due to timing derives from exits rather than entry.

The entry timing is on average neutral yet also hard to distill from the constraints on GP

discretion, such as investment periods' start and length.

The �rst contribution of this paper is, then, novel systematic evidence of successful

market timing actions by PE GPs that are important for the price and allocative e�ciency

of capital markets (à la Asriyan et al., 2017). To identify this channel, I make use of PE

contractual design. PE funds di�er from other forms of delegated asset management in

the near-absence of control that PE fund investors (limited partners [LPs]) have over the

1 Anecdotes on information spillovers from investing in private companies includes examples of successful
public �stock pickers� that heavily invest in private companies: Warren Bu�et of Berkshire Hathaway, Charles
Coleman of Tiger Global, and others. Beliefs in positive timing ability are consistent with survey responses
by GPs (Gompers et al., 2016, 2020) and by PE fund investors (Da Rin and Phalippou, 2017).
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timing of investments and divestments.2 This PE contract feature allows me to disentangle

GPs' superior information channel from alternative explanations, such as time-varying exit

conditions and causal e�ects of PE on public companies. The intuition behind my tests is

similar to that in the literature on private information-based self-selection in the insurance

industry (Chiappori and Salanie, 2000). While my main tests assume that the shifts in GPs'

personal wealth exposure do not pertain to the alternative explanations, I take advantage

of PE institutional settings to scrutinize this assumption. In particular, I run placebo tests

that examine industry returns following PE exits that are comparable in size and style but

happen well before or after the carry cash-out date. Hence, these placebo exits do not have

a �relief from exposure� e�ect on the GPs' wealth. I provide extensive robustness tests that

include regression discontinuity with funds' to-date performance as a forcing variable.

Identifying GPs' market timing skill is one thing; whether LPs should care about this in-

sight is another. LPs might ignore this timing altogether because their allocations to equities

(and speci�c sectors within equities) can remain unchanged if they adjust their public eq-

uity holdings accordingly.3 Given this argument, the literature on PE fund performance has

focused on evaluating abnormal holding period returns�that is, in comparison to similarly-

timed public market investments (see Ang et al., 2018; Kaplan and Schoar, 2005; Sta�ord,

2017, among others). If the valuation ratios that GPs buy [sell] at merely re�ect periods of

high [low] risk premia commanded by similar investments, the incrementally higher returns

from these deals represent a normal compensation to LPs for incurring a greater disutility

from risky investments. Alternatively, GPs' market timing decisions, as manifested by PE

2 Participation in a PE fund requires LPs to provide a prespeci�ed amount of cash over a multi-year
�investment period� period (usually 5 years) on a short notice in exchange for a stream of payouts from
the fund over a period of 10 to 13 years from the investment period start. LPs cede control to GPs, who
determine the schedule of fund outlays and in�ows (i.e., fund cash �ow), which is ex ante unknown to LPs.
GP also decide when to return the capital to LPs and receive �xed fees and performance fees (carry, a.k.a.
carried interest), a fraction of the fund's lifetime pro�ts. Once the investment period ends however, GPs
are not allowed to reinvest proceeds from fund assets but must distribute them to the fund LPs. See, e.g.,
Kaplan and Strömberg (2009), Metrick and Yasuda (2010), Robinson and Sensoy (2013) for details. Internet
Appendix provides more context.

3 For complete irrelevance of GPs' market timing decisions however, the LP needs to reinvest from/into
a comparable public stock (not just the broad index).
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cash �ow patterns, could create a valuable option for fund LPs, as long as GPs' decisions

re�ect superior information not already embedded in market prices. In other words, the

literature has remained unclear on whether LPs bene�t from GPs' market timing.

Revolving this lack of clarity, my second contribution is evidence that ceding cash �ow

rights to GPs does create economic value for fund LPs and constitutes an important dimen-

sion in the PE manager selection process. I show that an industry-level long-short trading

strategy implemented based on the signal from PE funds distributions generates 80 basis

points per quarter in the Fama-French three-factor alpha and a 0.3 higher annualized Sharpe

ratios. Industry-level market timing must then create value for LPs even when total equity

allocation remains constant. Therefore, some investors with PE portfolios can enhance their

overall portfolio performance using the information that other investors do not have in real

time.4 These results justify using total returns to quantify variation in skill across GPs

(Korteweg and Sorensen, 2017). Insofar successful market timing by GPs increases the fund

total return and produces useful information, the results of this paper potentially explain

the attention that LPs continue pay to GPs' ability to generate total returns (Da Rin and

Phalippou, 2017) in addition to the market-adjusted performance metrics.

Finally, by demonstrating the pivotal e�ect of in-the-money carry for GPs' market timing

decisions, this paper contributes to studies of the e�ects of investment manager compensation

schemes on performance (see, e.g., Brown et al., 1996). In the PE context speci�cally, while

Hüther et al. (2020) document that di�erences in carry rules a�ect fund returns ex ante, my

results speak to the dynamic e�ects thereof. Market timing actions yield a good setting for

examining this question, since the counterfactual outcome is relatively well observed. My

analysis also highlights why LPs cannot gain much from timing their commitments to PE

funds, as recently shown in Brown et al. (Forthcominig). GPs' timing of fund cash �ows

signi�cantly attenuates the e�ect of contractual start and end times.

4 There is a three-to-nine-month delay in the revelation of PE fund cash �ows to data vendors. Thus,
such a PE signal-based allocation strategy is feasible for LPs with representative enough portfolios managed
by skilled GPs whose incentives can be discerned relatively well.
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There is a large literature on market timing by professional managers of liquid assets

(see Wermers, 2011, for a recent review). PE fund cash �ows essentially indicate the times

and amounts of their trades. Therefore, my empirical setup is close to studies that utilize

holding-level information (see, inter alia, Agarwal, Jiang, Tang, and Yang, 2013; Copeland

and Mayers, 1982; Grinblatt and Titman, 1989, 1993; Jiang, Yao, and Yu, 2007). These

studies appear more likely to �nd evidence of successful timing than the strand of literature

that examines the time series properties of portfolio returns at monthly or daily frequency

(see, e.g., Ferson and Schadt, 1996; Henriksson and Merton, 1981; Jenter, 2005; Timmermann

and Blake, 2005).5 Notably, such time series statistical methods are largely inapplicable with

PE fund data because GP-reported net asset values (NAVs) are smoothed (Brown et al., 2020)

and prone to manipulations (Brown et al., 2019).

While my GP market timing measure is very much in spirit of the Grinblatt and Titman

(1993) measure that naturally decomposes into the broad market, industry, stock speci�c,

etc.; I zoom at the industry level. On the one hand, my data do not permit a comparable

asset of a �ner granularity than industry. On the other hand, the presence of market-wide

timing is eclipsed by the industry timing (gross of broad market) because, as discussed

above, such GP-induced changes to LP portfolios generate value even if LPs partially undo

the e�ects by reinvesting proceeds in public equities. The preponderance of evidence suggests

that, on average, GPs' broad market timing is a watered-down industry timing. Besides the

long-short strategy performance results, I show that (i) the predictability is zero against the

industries that comoved with the fund's focal industry the least, and (ii) the predictability

in the focal industry relates to its future earnings news rather than variations in the discount

factors (as per a Campbell and Shiller-like decomposition of returns).

Why would GP market timing relate to the industry's future earnings? Ben-David et al.

(2019) �nd that corporate executives (i.e., �insiders�) earn abnormal returns in trading stocks

5 Some exceptions include Gri�n and Xu (2009), who, using 13F data, �nd that hedge funds exhibit
no ability to pick sectors; and Chen and Liang (2007), who, using a Henriksson and Merton-like statistical
model, �nd that self-described market timing hedge funds outperform public information-based strategies.
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that belong to the industry of their employer and that this is likely due to better interpre-

tations of public news about that industry (see also Bradley et al., 2017; Kacperczyk et al.,

2005). This is one mechanism, albeit not unique to PE funds, that can explain my �ndings.

Another (yet complementary) mechanism relates to GPs' high involvement in planning and

tracking the operational performance of their investee companies.6 It is plausible, albeit

hard to corroborate with direct anecdotes, that GPs �lter valuable signals from such real-

time and less biased cash �ow projections from the management of dozens [hundreds] of

related companies they oversee [con�dentially screen].

GP market timing has many scopes that my study does not pursue, however: when the

new fund is launched, what strategy the fund adopts, etc. Relative to funds that invest

in liquid assets, the scope and incentives for market timing are a�ected by the �nite-life

absolute returns-based contracts prevalent in PE settings. These are interesting avenues for

future research facing interesting identi�cation challenges, since the observed outcomes are

more re�ective of factors beyond GPs' the direct control (e.g., supply of LP capital).

Between the data description and concluding remarks, the main analysis in this paper is

organized in two interconnected blocks�sections III and IV. The �rst block provides descrip-

tive evidence consistent with market timing actions by GPs. The second block distinguishes

the superior information channel from alternative explanations. The tests in the second block

can be viewed as the conditional holdings analysis of Ferson and Khang (2002), whereas the

�rst block features the unconditional counterpart thereof. Supportive materials are orga-

nized in Appendix A, Appendix B, and Internet Appendix, while Appendix C summarizes

key variable de�nitions.

6 See, for example, �What private-equity strategy planners can teach public companies,� McKin-
sey&Company, October 2016. The attention to up-do-date projections is high in the not-for-control transac-
tion as well�a typical term sheet requires the investee company to provide annual operating plans updated
monthly even when the GPs do not receive a board seat (see, e.g., Lerner et al., 2012, p.150).
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II. Data

PE data for this study are obtained from Burgiss. The dataset is sourced from approx-

imately 300 LPs that collectively have made over 20,000 commitments to private capital

funds, and it includes their complete cash �ow and valuation histories. Harris, Jenkinson,

and Kaplan (2014) compare several PE datasets and conclude that the Burgiss dataset is

representative of the buyout and venture funds' investable universe. The dataset maintains

con�dentiality by removing all names (see Brown et al. 2015 for additional details).

I limit the sample to US-focused buyout and venture funds with more than 25 and 10

million in capital commitments, respectively, incepted between 1979 and 2006. The sample

includes 349 (592) buyout (venture) funds, of which 126 (169) continue operations as of

March 2013. For each fund, I observe: (i) the primary industry sector according to the

Global Industry Classi�cation Standards (GICS)�henceforth, Industry ; (ii) the amount of

capital committed; (iii) the strategy description; (iv) dated amounts of cash in�ows and

out�ows as well as NAVs reported quarterly. The cash �ows are net of all fees, allowing me

to accurately compute returns to LPs.

I observe neither the gross-of-fees performance of fund investments, nor the fee terms.

However, the only contractual term essential for my tests, the minimum rate of return to LPs

above which GPs start to earn carry (henceforth Hurdle), has virtually no variation within

fund type according to multiple studies (e.g., see Metrick and Yasuda, 2010) at 8 [0]% for

buyout [venture] funds. The literature also documents substantial variation in schedules

of fund cash �ows (Robinson and Sensoy, 2013, 2016). Internet Appendix con�rms the

heterogeneity in cash �ows for my sample and discusses the consequences of di�erent carry

waterfall contractual provisions (�deal-by-deal,� �whole fund,�, �catch-up,�) for inference by

using fund net IRR as a proxy for fund carry being in-the-money. In short, my approximation

is likely to underestimate carry claims and produce more false negative than positive errors

regarding whether a given fund's carry is in-the-money.

Panel A1 of Table 1 reports the basic summary statistics for buyout and venture sub-
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samples, suggesting high within-type variation in fund life duration, size, and returns. 85%

of the funds are a�liated with GPs that managed multiple funds. For each fund, I compute

the chronological order (by inception date) within GP and GP×Industry. Thus, the median

fund in the dataset is the second by a GP and within a given industry, while about a quarter

of funds are fourth or higher in a sequence. The panel also reports Kaplan and Schoar (2005)

Public Market Equivalent (PME) computed against the fund Industry.

[Place Table 1 here]

For public equity returns, I utilize S&P500 Global Industry Classi�cation Sectors (GICS)

subindexes, which map directly to the classi�cation in the Burgiss data and represent widely

followed benchmarks by practitioners. Burgiss reports GICS for 881 out of 942 in my sample.

For the unclassi�ed funds (most of which are buyout funds), I assign �Industrials� as Industry

focus. Results are similar if I use S&P600 subindexes, the small capitalization stocks.

Panel A2 of Table 1 reports the distribution of my fund sample by GICS and vintage

year group. Panel B reports the summary statistics for monthly returns, price-earnings, and

book-to-market ratios from January 1989 through September 2014 for respective S&P500

subindexes. Additionally, for each fund, I observe a dummy (but not the underlying scores)

indicating whether the declared industry comprises more than 50% by value of the actual

investments made by the fund. Only 59% of my sample funds portfolios have such concen-

trated portfolios (untabulated). It does not imply, however, that the remainder of funds

have investments spread over more than 2�3 industries.

Summary statistics for other variables of interest are reported in Panel C of Table 1.

These include equity return Predictive covariates (see Appendix C). The panel also reports

summary statistics for IndEPSsurprise and IndForwardMult∆, which denote, respectively,

the industry aggregate di�erence in reported earnings from the analyst forecast and the

change in price-to-`forecasted earnings' ratio. Both variables are computed from the me-

dian 12-month analyst forecasts of EPS for the S&P500 GICS subindex as computed by

Bloomberg.
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III. Suggestive Evidence

This section outlines the ways that GPs' market timing decisions can manifest in PE

fund data. It proposes a simple metric that unambiguously captures one of these timing

e�ects on fund performance based on readily observable fund cash �ow data.

The pieces of information that a GP obtains through the investment cycle and public

markets valuations are closely related (see Internet Appendix for a discussion of the in-

stitutional background). Public market prices re�ect cash �ow expectations and investor

preferences, while also a�ecting the fund's investment entry and exit prices, regardless of

the deal sourcing and exit route. As an example, consider an exit through a sale to a public

corporation, which might be a stronger indication of a GP's negative outlook because IPOs

feature lockups and represent merely a �beginning of exit.� Bargaining over price would

normally revolve around an assortment of valuation ratios of comparable publicly traded

�rms as indications of a fair value, even if their business characteristics might not exactly

match those of the target company. Hence, GPs have incentives to act on their superior

information about the industry trends even when their portfolio companies have relatively

small exposures to these trends.

GPs' ability to act on company-speci�c information is likely to be limited by adverse

selection concerns from the prospective buyers. A need to make concessions regarding

company-speci�c valuation is consistent with buyout- and venture-backed IPOs' outper-

formance against characteristics-matched portfolios (Cao and Lerner, 2009; Harford and

Kolasinski, 2013). However, the adverse selection is a less relevant concern with respect

to the company's industry-wide valuation, since those who typically trade with PE funds

are more concerned about the relative performance of the asset rather than absolute per-

formance of the asset. In contrast, PE GPs stand to receive a fraction of the fund's �nite

lifetime absolute pro�ts (see, e.g., Metrick and Yasuda, 2010; Robinson and Sensoy, 2013).

Given the institutional settings, the scope for market timing by GPs can be very broad. In

this paper, I study GPs' arguably more discretionary decisions�when to deploy and release
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the committed capital over a fund's contractual life. I abstract away from the analysis of

decisions concerning when to launch a fund and what strategy to adopt as its mandate.

Speci�cally, I de�ne (the e�ect of GPs') market timing as the excess return that an

outside investor would attain if she bought and sold an identical company at the same times

as the fund GPs made capital calls and distributions. The tightest de�nition of an identical

company that my data allow is the portfolio of public �rms in the same industry. To the

extent that GPs' informational advantage dissipates beyond the area of fund specialty, a poor

match of industry (as the identical company proxy) will act against �nding robust results.

Conversely, �nding results to be stronger with benchmarks less related to the funds' areas

of expertise would point to explanations other than private information �ow in PE.

A. Market Timing Metric

Consistent with the above de�nition of market timing, I propose a measure of gross return

over a fund's life due to selling at market highs and buying at lows. Computationally, it is

similar to Kaplan and Schoar PME. However, Timing Track Record (TTR) measures the

component of the fund's total returns that PME explicitly disregards:

TTR = PME/PME =

∑T
t=0Dt·exp{r1:T ·(1−t/T )}∑T
t=0 Ct·exp{r1:T ·(1−t/T )}/

∑T
t=0Dt·exp{rt+1:T }∑T
t=0 Ct·exp{rt+1:T }

=

∑T
t=0Ct · exp{rt+1:T}∑T

t=0Ct · exp{r1:T · (1− t/T )}︸ ︷︷ ︸
Entry Timing

·
∑T

t=0Dt · exp{r1:T · (1− t/T )}∑T
t=0Dt · exp{rt+1:T}︸ ︷︷ ︸

Exit Timing

,
(1)

where t = 0 is the fund's inception, rt+1:T is a continuously compounded return on public

benchmark between date t and the fund's resolution, T , setting rt+1:T := 0 for t ≥ T − 1. Dt

is the fund's distribution at end of period t, and Ct is capital calls.

Per equation (1), TTR is a ratio of two pro�tability indexes (PI) featuring the same cash

�ows but di�erent discount rates. The discount rates in the denominator ratio, PME, re�ect

the investment period opportunity cost of capital. The discount rates in the numerator,

PME, re�ect the average return on the benchmark during the fund's life and, therefore, can
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be thought of as the commitment period opportunity cost. A TTR value above one indicates

that the PI is greater if measured against the fund commitment period opportunity cost and,

hence, suggests positive value added by the GP.

The second line of equation (1) provides more insight by rewriting TTR as a product

of two ratios. The �rst ratio compares (i) the period-T value of capital calls if invested in

a public benchmark on the dates of those calls to (ii) the value of those call amounts if

invested at a rate that public benchmark returned on average during the fund life. When

(i) is greater than (ii), the GP called the fund's capital when future returns on the public

benchmark (i.e., the proxy for an �identical company�) were high relative to its return on

average during the fund's life. A stylized example below develops this intuition further.

Consider two funds, A and B, that start at the same time with $30 in committed capital

and have up to two years to invest. Both funds liquidate in the fourth year. Assume that

neither fund has company selection or nurturing skill and earns exactly the market rate of

return on investments, so that PME = 1.0 for both funds. However, fund A chooses to draw

capital in equal installments over three years, whereas fund B, having correctly anticipated

a market downturn in year 2, draws less capital initially:

Entry Timing Example

Year rmkt Fund A Cash Flows Fund B Cash Flows Fund A EoY NAVs Fund B EoY NAVs

0 - -10 -5 10 5

1 5.0% -10 -5 20.50 =10·1.05+10 10.25

2 -13.6% -10 -20 27.71 28.86

3 5.0% 0 0 29.09 30.30

4 5.0% 30.55 31.81 0 0

PME 1.00 1.00

PME 1.02 =30.55/30 1.06 =31.81/30

TTRTTRTTR = PME/PME 1.02 =1.02/1.00 1.06 =1.06/1.00

While both funds have PME of one, fund B creates potentially more value to its LPs

than fund A: 1.81 versus 0.55. This is re�ected in a higher PME and thus a higher TTR

for fund B. In this way, TTR measures market timing by the managers of fund B.

The money multiple (i.e.,
∑
Dt/

∑
Ct ) is an absolute performance metric widely utilized
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by practitioners and would re�ect the di�erence in returns to LPs from funds A and B. The

money multiples of A and B are 1.02 and 1.06, respectively. In this example, they equal

to TTRs because the cumulative market return is zero and the PME of each fund is unity.

This is, however, almost never true in practice, as the market trends over fund lives and the

funds' holding period excess returns vary.

Note also that in this example, the exit timing ratio (the last term in equation 1) is equal

to one, since there is only one distribution made at the very end of fund life. In practice, this

is rather unusual, as funds tend to make many interim distributions. The exit ratio would be

greater than one if public benchmark returns that follow the distributions were lower (i.e.,

reducing the denominator) than on average during the life of the fund. Internet Appendix

provides more general examples in which TTR captures the timing of exits as well.

An alternative formulation for TTR is the residual from money multiple, PME, and the

fund's duration-adjusted trend in the public benchmark:

(2) ln(TTR) = ln(MM)− ln(PME)− r̄ · FundDuration .

Appendix A derives equation (2) and shows its equivalence to equation (1).

By construction, TTR is reasonably robust to heterogeneity in funds' risk levels. As

shown in Korteweg and Nagel (2016), the bias in PME arises because the realized risk

premium on the benchmark tends to be di�erent from that under CAPM with log-utility

preferences. This bias is at least partially mitigated in TTR because the realized risk pre-

mium for PME (the numerator of equation 1) is close to that for PME (the denominator).7

The di�erence amounts to weighting the realized risk premia equally during the fund's life

as opposed to proportionally to the fund's NAVs.

Finally, while a level of one is a natural reference, the realized TTR can also be compared

with a TTR derived from a hypothetical cash �ow schedule between the dates that the fund

7 Note that, as ratios, neither entry and exit TTRs nor PME and PME depend on whether future- or
present values (more typical for PME notation) are used to form them. Also, by using the industry portfolios
as benchmarks, I reduce the deviation of fund cash �ows' betas (with respect to these benchmarks) from
unity, which signi�cantly improves the precision (Korteweg and Nagel, 2018).
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was active. It is also evident that, insofar capital calls and distributions span changes in the

portfolio weights, TTR can be viewed as a particularly scaled measure of covariance between

the holding weight change and the subsequent return, as in Grinblatt and Titman (1993).

B. Empirical Analysis of Timing Track Records

Panel A of Figure 1 plots frequency distributions of TTRs for the sample funds against

Industry returns separately for buyout and venture subsamples. First, there is a signi�cant

variation across funds, suggesting that TTR is indeed a potentially important dimension

of performance. About 10% of funds managed to lose in excess of 20%, whereas the 90th-

percentile fund (venture and buyout samples combined) gained over 50% by timing the

within fund-life industry valuation cycles. Second, the means are statistically greater than

one although smaller in magnitude than for PMEs, which measure the holding period returns.

Adjustments for typical holding periods suggest a mean �timing alpha� of about 1% per year

versus 2�4% per year from the PME-based inference about the �holding alpha.�

[Place Figure 1 here]

Panel B of Figure 1 better gauges the importance of TTR in the cross-section of fund

returns by reporting the variance decomposition of the money multiple (following equation 2)

by PME quartiles. It shows that the dominance by PME is limited to the top- and bottom-

quartile funds. In contrast, the contribution from timing is as large as that from holding,

and the two components are virtually uncorrelated and therefore quite likely to o�set each

other for funds in the middle two quartiles by PME. For 44% of sample funds, the TTR's

di�erence from one exceeds that of PME.

Note that TTR equals one for any cash �ow schedule whenever the benchmark's return

is equal across periods. Accordingly, since TTR is bounded by the benchmark's variance

over the fund's life (unlike PME), it is unsurprising to observe more extreme values for

PME in either tail of the distribution. The benchmark variance bounds also help explain a

larger dispersion of TTRs in the venture subsample that is skewed to riskier industries (e.g.,
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IT, Healthcare) and suggests that the sign on log TTR may provide for a more consistent

signal about GP skill, since the magnitudes may have limited comparability across industries

and time. More interesting is the non-zero and opposite-sign covariances between TTR and

PME in the extreme quartiles, as depicted in Panel B of Figure 1. This pattern suggests

that for the best performing funds, timing and holding returns tend to be positively related.

However, timing tends to somewhat mitigate the inferior returns from holding in the bottom

PME quartile.

B.1. Relations with Fund Characteristics

Table 2 reports regression results of TTRs computed against the fund's focal industry

on GP characteristics that proxy for institutional quality (e.g., Kaplan and Schoar, 2005;

Robinson and Sensoy, 2016). Fund size is positively related to end-of-life TTR, while the size

squared loads negatively. However, coe�cients on size become insigni�cant when temporal

variation is controlled for via vintage-year �xed e�ects, as per speci�cation (2). According

to speci�cations (1)�(3) and (6), TTR positively relates to the fund's ordinal sequence in

a given GP×industry. This indicates that funds run by GPs with more experience in the

industry tend to better navigate industry peaks and troughs.

[Place Table 2 here]

The positive coe�cients on PME in speci�cations (3), (5), and (6) corroborate the vari-

ance decomposition analysis discussed above. Funds with higher PME also tend to be better

at timing the industry valuation cycles, even when the inception year and other covariates

are controlled for. This pattern may arise due to a number of reasons that are not mutually

exclusive. First, very few bottom-quartile funds attain high enough absolute return for GPs

to receive carried interest. Consequently, these GPs have little incentive to avoid a reduction

in the funds' asset values. Second, the selection and nurturing skill (that PME encompasses)

can genuinely relate to GPs' knowledge of the industry, which enables successful timing of

its cycles as well. It is also possible that PMEs pick up the e�ects of inherent market timing

decisions that do not trigger fund-level cash �ows. These could be mergers and acquisitions
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by the fund's portfolio companies that did not require new equity injections from the fund.

Speci�cations (4) through (6) show a positive relation between a GP's previous and current

funds' TTR. This indicates that timing ability is persistent at the GP level.

In Appendix A, I report robustness and falsi�cation tests for the results in Table 2

and the univariate analysis reported earlier. Speci�cally, Panel A of Table A.1 reports

similar regressions but with additional control variables that proxy for possible measurement

errors in TTRs. The results are largely unchanged from those in Table 2. Panel B of

Table A.1 reports analysis based on simulated fund cash �ows under various assumptions

about individual fund risk (as indicated by the subpanel headers) while keeping the fund

start dates and the industry returns �xed to the actually realized values. The key takeaways

from this analysis are as follows.

The average fund delivers 70�80% of the feasible gains from timing (measured by the

interdecile range of simulated TTRs). The unconditional probability that a fund's TTR

will exceed that of a random cash �ow schedule is 52-53%. Even though neither of these

magnitudes strikes as very large economically, each one is statistically di�erent from 50%.

As for the multivariate relations reported in Table 2, none of them hold with the simulated

TTRs on average across replications. Perhaps the only exception is the coe�cient on PME,

which came back at 0.02�0.03 with a t-statistic of 1.5 in simulations. While both are a factor

of two-to-three smaller than with the actual fund TTRs and PMEs, I conduct additional

analysis in Internet Appendix. It shows (i) positive association between TTRs and PMEs

in settings that are more robust to risk heterogeneity and fund life overlaps; (ii) weaker

associations of TTR with PME computed against the broad market and with the fund's

ordinal sequence unconditionally on industry.

Just like PME, TTR can be computed on a to-date basis by assuming a particular date to

be the last and the NAV as of that date to be a liquidating distribution. Panel A of Figure 2

compares such interim TTRs (measured at the �fth anniversary) with the �nal TTRs for

the funds that operated for at least nine years. Importantly, the mean market return for
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PME computation is also date speci�c, so that no information beyond that date is utilized.

It appears that funds with good TTRs as of midlife tend to further improve it by endlife.

[Place Figure 2 here]

To preclude a spurious correlation between the interim and �nal values of TTR, panels

B and C of Figure 2 plot the growth in TTR after the �fth year on the y-axis. Panel B

limits the sample to funds with net-of-fees IRR exceeding the Hurdle rate as of the �fth

anniversary, while Panel C covers the complement set. The charts reveal a positive relation

between the interim and �nal TTRs when GPs' option to receive the fraction of fund assets

is in-the-money (Panel B) and a negative-to-�at relation when incentives for GPs are less

well aligned (Panel C). However, the relation is mostly �at among funds with TTR above

one suggesting that the variation in magnitude is less predictive than the sign of its log.

B.2. Entries versus Exits

I now examine the entry and exit contribution to the fund's overall TTR, as implied by

equation (1). I begin with the variance decomposition of log TTR in Panel C of Figure 1.

To preclude a mechanical relation between exit and entry TTRs, I measure r1:T over the �rst

six years for computing the entry TTR, and start with the fourth year in computing the

exit TTR. The panel shows that the exit TTR has higher variance than the entry TTR and

that the covariance between the two is positive. The panel also shows that the covariance

is larger for funds with higher overall TTR in the current vintage and higher previous fund

TTRs, but is smaller when the average vintage peer exhibits good entry timing.

In untabulated analyses, I �nd that the average entry TTR is just below one, at 0.997

[0.982] for venture [buyout] funds, as opposed to being statistically greater than one for both

subsamples with regards to exits (1.071 on average). Table 3 reports multivariate analyses of

these TTR components.8 Speci�cally in Panel A [B], I regress the log of entry [exit] TTR on

the overall to-date TTR as of the fund's 5th anniversary and other variables. I examine the

8 The number of observations varies across speci�cations, as I do not condition on observing the GP
identi�ers in each, unlike for Table 2. The results are very similar if the sample constrained to feature only
known GP identi�ers. For inference, unknown GP funds are assumed to have di�erent GPs.
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relations with the indicator for whether the declared industry comprises more than half of

the fund investments (�Declared Ind.>50%P� see section II), the peers' average entry [exit]

log TTR, and the indicator for whether the GP had an overall TTR greater than one in the

previous fund (�Previous fund TTR≥1�).

[Place Table 3 here]

The regressions reveal several interesting patterns. First, both entry and exit TTRs

strongly and positively relate to the overall TTR, even if measured at a fund's midlife,

with the coe�cient being nearly twice as high for the entry case. Second, the portfolio

concentration in the primary industry positively associates with both components, although

the relation is statistically weak and not robust to vintage year �xed e�ects (speci�cations 4

through 6). For exit TTR, vintage �xed e�ects turn the coe�cient from zero to signi�cantly

positive. For entry TTR, vintage �xed e�ects attenuate the previously signi�cant positive

coe�cient on Declared Ind.>50%P. Interestingly, vintage �xed e�ects also have a di�erent

e�ect on the magnitude of the very strong association between the fund's entry and exit

track records with those of its peers. For entry, the coe�cient attenuates from 0.946 to 0.71,

much less so than it does for exits�from 0.953 to 0.237. Finally, the correlation with the

past fund TTR indicator is only weakly positive for the exit TTR and actually negative for

the entry TTR. This result stands in contrast to the the strongly positive relation for the

overall TTRs reported in Table 2, which also holds with the dummy variable de�nition.

These patterns are consistent with a fund entry TTR being stronger associated with

vintage year and peer characteristics than its exit TTR, perhaps re�ecting tighter contractual

constraints on GPs with regards to investing of funds' capital in comparison to divesting of

funds' assets. Investment period start and duration are subject to less discretion by GPs

than are the individual investments' holding periods. Nevertheless, it appears that both exit

and entry TTRs are complementary indicators of GPs' timing skill.

It is noteworthy that the Declared Ind.>50%P dummy re�ects GPs' discretion about how

much to concentrate investments in the fund's focal industry. Therefore, another interesting
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angle is the dummy's relation with the di�erence between TTRs computed against the focal

industry and that against the broad market returns. This analysis is reported in Table A.2

and suggests that funds with more concentrated portfolios deliver 1.5�3% higher entry TTRs

if measured against the industry benchmark. However, this relation is not statistically

signi�cant amongst venture funds. It is also attenuated for exit TTRs, as follows from panel

B of the table. The panel suggests that venture funds are unconditionally better at timing

their industry peaks (rather than market-wide) if vintage �xed e�ects are accounted for.

Given that the carry role is more salient in venture fund compensation (see, e.g., Chung

et al., 2012), these results point to the potential importance of carry-related incentives for

exit timing, as do the post-interim trends in TTR depicted in Figure 2. The following section

explores the incentives margin in great detail.

IV. Detecting Superior Information

I begin by reviewing explanations for TTR exceeding one and persisting that do not imply

value creation by GPs. I then develop and conduct tests that detect superior information-

based market timing regardless of whether these alternative explanations also hold.

A. Identi�cation Challenge

First, fund cash �ows may simply re�ect the broad market and industry conditions for

entry and exits. Schultz (2003) shows that mean-reversion coupled with a decision rule of

issuing after market's run-ups is observationally similar to informed trading. Pástor and

Veronesi (2005) model �rational IPO waves�, whereby issuance varies endogenously as a

function of market conditions without any overreactions by investors or di�erences in signal

precision. Following Ball et al. (2011), I refer to this alternative as �Pseudo-timing�.

While Pseudo-timing can be implemented without the costly intermediation of a GP, it

can also generate utility losses to LPs. In a portfolio choice framework featuring both types of

risky asset�liquid and illiquid�Pseudo-timing by GPs commands a higher expected return
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on the PE portfolio (Ang et al., 2014; Bollen and Sensoy, 2016). This happens because

consumption can only be �nanced with liquid wealth and such contra-cyclical PE cash �ow

patterns increase [reduce] the weight of illiquid wealth in high [low] marginal utility states.

It therefore can be argued that delegating cash �ow timing rights to GPs o�ers little bene�t

if Pseudo-timing is all they do.9

The second group of alternative explanations pertains to possible causal e�ects of PE fund

operations on the behavior of public �rms and investors. Several recent studies document

that �rms respond to governance threats and improvements in peer �rms by changing their

investing and operating policies (Aldatmaz and Brown, 2020; Bernstein et al., 2016; Gantchev

et al., 2019). For example, Aldatmaz and Brown (2020) �nd that PE investments cause

�nancial and operating changes in publicly listed �rms in the same country-industry. Harford

et al. (2019) �nd that leveraged buyouts predict merger waves and higher valuations in the

industry. These �nding may suggest that the industry cash �ows change because PE funds

alter their involvement in the industry. I refer to this alternative as �Footprint-on-Firms�.

Positive and persistent TTRs can also arise when the market prices temporarily decrease

to absorb the increased supply of certain types of assets coming from potentially more

informed investors (i.e., the PE GPs). I refer to this as the �Price Distortion� alternative.

Note that if those fund exits had less negative spillover e�ect on comparable �rm cash �ows

or prices, the overall portfolio returns would have been higher at least for some LPs (e.g.,

those who held stakes in these comparable �rms, or sold into temporarily depressed prices).

Therefore, neither Footprint-on-Firms nor Price Distortion imply economic gains to LPs,

while possibly having adverse e�ects on capital market e�ciency.

We also know that the current fund's pro�t is not the only objective that GPs maximize

(Chung et al., 2012; Metrick and Yasuda, 2010) and fund distributions can be a signaling

9 Since LPs know their liquidity needs better, co-investing strictly dominates committing to commingled
funds. See Munk, N., �Rich Harvard, Poor Harvard,� Vanity Fair, August 2009 and Ang, A., �Liquidating
Harvard,� Columbia Business School case study. For certain LPs even pseudo-timing may create value how-
ever, provided that it does not jeopardize the holding period returns (see section 3.1 of Internet Appendix).
These LPs are, for some reason, unable to implement such counter-cyclical investment strategies at a lower
(than hiring a PE GP) overall cost.
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device. In particular, PE funds often �rush� to make distributions from a current fund to

mitigate reputational concerns with LPs and secure a follow-on fund (i.e., to �grandstand�,

as per Gompers, 1996). While this Grandstanding alternative should actually counteract

Pseudo-timing in aggregate, it induces heterogeneity in cash �ow patterns across funds, as

some GPs experience less pressure to make premature distributions. Therefore, the variation

across fund TTRs, as well the by-GP and within-fund persistence in TTRs reported in

section III, could be explained by a combination of Pseudo-timing and Grandstanding.

Finally, the evidence needs to be robust to heterogeneity in systematic risk at the fund-

and industry levels, as well as to possible NAV manipulations by GPs (Brown et al., 2019).

A.1. Ideal Setup

To test for the presence of the superior information-based market timing, I utilize dif-

ferences in the propensity to deploy this skill (or information) due to shifts in contractual

incentives to GPs. The di�erences are induced by the fund to-date performance, which re-

�ects a great deal of luck (Korteweg and Sorensen, 2017), and the �nite-life feature of the PE

fund contract. The idea can be conveyed via the following diagram that depicts a dilemma

faced by GPs of a fund that has already deployed its capital. These predictions arise from

a standard setup for optimal stopping under uncertainty, a brief review of which is given in

the Internet Appendix.

Do you want to rush your fund's exits?

Fund return to-date

Market Outlook
Negative Positive

Above Hurdle rate Yes Not as much

Below Hurdle rate Not as much Not as much

The columns indicate GPs' outlook (unobservable to the public) on the market for assets

similar to the fund's holdings, while the rows indicate the fund's to-date performance. Net

IRR above [below] the Hurdle rate implies that the fund GPs would secure [destroy the

option for] performance fees if the fund were resolved at current NAVs. Importantly, the

predictions in the diagram do not assume that GPs have no other incentives to time exits
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(e.g., charm LPs to raise a larger next fund) but only that carry-related incentives a�ect the

fund distribution patterns, at least marginally. The results in Robinson and Sensoy (2013)

support this assumption. Should it (or the carry approximation) fail for my sample, I would

be unable to reject the null hypothesis that GPs have no superior information.

Now consider a population of PE funds that are identical to each other in every respect

except for the inception date and the amount of luck they experienced with idiosyncratic

returns on the investments they had made. If each fund had only one investment (and could

exit it instantaneously and only in whole), then the following OLS regression would provide

a robust test for the presence of market timing skill among the funds' GPs:

MarketReturni,t+1 = γ I(Exit)i + α I(Exit|IRRaboveHurdle)i
+E[MarketReturni,t+1|PublicDatat] + ei,t+1 ,

(3)

where I(·) and | denote, respectively, indicator variables and conditioning operator, while

E[MarketReturni,t+1|PublicDatat] is the expected market return conditional on public infor-

mation as re�ected in market prices at the time of fund i exit occurrence. Henceforth, I will

denote it with EPt [Marketi,t+1] for brevity.

The setup is analogous to the standard test for the presence of asymmetric information

by comparing ex post risk realization (the observable outcome) and ex ante contract choice

(the observable action) in the literature on adverse selection in insurance (e.g, Chiappori

and Salanie, 2000). If GPs have superior (relative to the public) information, they would

choose to exit before the market downturn when the carry is at stake, resulting in a negative

α-coe�cient in model (3), since less incentivized GPs would exit more randomly. If GPs

merely respond to market conditions (e.g., Ball et al., 2011), EPt [Marketi,t+1] should absorb

the variation in these conditions insofar the public interprets them correctly.

What if GPs were not identical? If we observed an ex ante proxy for their market timing

skill, we could incorporate it in the above regression as follows:

MarketReturni,t+1 = γ I(Exit)i + α I(Exit| IRRaboveHurdle, Skill)i,t−1

+α1I(Exit|IRRaboveHurdle)i + α0 I(Exit|Skill)i,t−1 + EPt [Marketi,t+1] + εi,t+1 .
(4)

Controlling for the proxy of GP skill increases the estimates' e�ciency, as variance of εi,t+1

21

Electronic copy available at: https://ssrn.com/abstract=2802640



should be lower than that of ei,t+1 from model (3) if the proxy is indeed relevant. In addition,

this speci�cation provides for a nested test of whether all PE exits are informative conditional

on aligned incentives (i.e., α1 < 0 so as α) and absorbs the variation in exiting times due to

GP heterogeneity via coe�cient α0. The latter can emerge, as a result of Grandstanding as

discussed in the previous section, whereby less reputable GPs might be forced to markedly

divest the current fund before raising a new one.

In tests for adverse selection in the context of insurance contracts choice, omitted het-

erogeneity is a potent concern because it can correlate with both ex ante choices and ex post

outcomes. I argue that applying the same identi�cation idea to PE mitigates such concerns

markedly. First, it is hard to see how predetermined characteristics of GPs would predict

public market returns. Second, conditional on EPt [Marketi,t+1], the predictions for a higher

rush to exit hold even for risk-neutral agents.

Nonetheless, the possibility that the ex ante choice is causing the outcome (rather than

re�ecting pure self-selection) remains a concern in my analysis and needs to be �assumed

away� to some extent.10 Aside from the lack of a rift in incentives for timing of entries, this

is another strong reason to focus on exit decisions for identi�cation, because the literature

reviewed earlier has established causal spillover e�ects from PE entries. However, as dis-

cussed below, I take advantage of PE institutional settings to scrutinize the assumption that

heterogeneity in Footprint-on-Firms and Price Distortion does not drive the results on exits.

A.2. Feasible Proxies

Implementing the incentives-based identi�cation scheme outlined above involves two

more11 measurement issues because (i) PE funds almost never divest their portfolios in

�one shot�, and (ii) EPt [Marketi,t+1] is not directly observable.

In practice, a PE fund distribution process spans many years via dozens of installments,

and often never fully completes with respect to a small fraction of assets (see Internet Ap-

10 This is analogous to the assumption that the scope for moral hazard associated with agent choice of a
higher coverage insurance contract is minimal (see, e.g., Finkelstein and McGarry, 2006).

11 In addition to using net IRR level as proxy for accrued carry�see section II for discussion.
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pendix for details). I therefore approximate I(Exit)i-indicator with a continuous variable that

re�ects a fraction of the fund distributions that occurred shortly before the fund assets be-

came small in comparison to the fund total distributions to date (henceforth SubResTime�

short for �Substantially Resolved�). The fraction is closer to one [zero] when most of the

fund divestments took place on the eve of [long before] SubResTime. Hence, it measures the

extent that GPs were �rushing� to exit ahead of that quarter. The chart below provides the

intuition for how the combination of Rush and SubResTime maps to I(Exit).

Key Variables' Intuition

The bars in the chart indicate cash �ows for three hypothetical funds. Capital calls are

negative, followed by positive distribution towards the end of contractual life (T ). The

dashed red lines indicate the ratio of fund NAVs to the total distributions to date with

values reported on the right-hand y-axis. When this ratio is high (only values <1 are plotted),

the remaining exposure to the market is large relative to the already �harvested� amount.

Subsequent distributions reduce this exposure for the fund and, hence, for GP carry. The

quarters in which these ratios cross 15% are marked with a vertical arrow line and indicate

SubResTime; that is, when remaining exposures become inconsequential for the fund lifetime

results. In this example (and in the actual tests), I use a six-quarter window to compute Rush,

plotted in solid black line.12 Accordingly, the distributions that contribute to the numerator

of Rush as of SubResTime are highlighted in gray, while the distributions indicated with

12 I �nd similar magnitudes with four- and eight-quarter windows. This approach reduces di�erences
between exit venue choices (i.e., trade sale versus IPO). See Internet Appendix for more discussion. For
NAV thresholds, I examine a range between 5% and 25% and report tests for 15% and 20%. Since the funds
are nearly fully resolved, possible NAV manipulations are unlikely to meaningfully a�ect the measurement.
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white bars only contribute to the denominator of Rush (i.e., total distributions to date).

From the example chart, it is clear that fund B rushed the most and, if its GPs had

in-the-money carry, it would correspond to I(Exit|IRRaboveHurdle)i = 1 most closely. By

contrast, fund A would be coded to have rushed less than fund C, indicating a likely more

favorable market outlook held by its GPs. Meanwhile, the fact that PE funds also make

substantial distributions long before and after SubResTime yields natural settings for a

placebo test concerning possible heterogeneity in Footprint-on-Firms: if future returns tend

to dip because the gray bars somehow cause it, so should the white bars.

I use the sector index returns corresponding to the funds' industry specialization (see

section II) for MarketReturni,t+1. As discussed in the introduction, industry-level timing

eclipses the relevance of market-wide timing from the LPs' perspective. Because PE funds

cannot recall the capital once it has been distributed to LPs during the post investment

period, it makes sense to focus on relatively long-lived market downturns. For this reason, I

set the predictive horizon to 12-month following SubResTime.

To control for EPt [Marketi,t+1] as prescribed by models (3�4), I use a combination of

market return predictive covariates established in the literature (rede�ned at the industry

level where possible, see Appendix C) and a simulation-based estimator. As discussed in the

following section, this approach allows for weaker identifying assumptions across my battery

of tests and reduces confounding from a potentially misspeci�ed regression equation.

B. Test Results

Going forward, I will not separate buyout and venture samples�the identi�cation scheme

applies to both and section III suggests qualitatively similar results.

B.1. Informed Rush versus Uninformed

Table 4 reports feasible estimates of models (3�4) via the following regression:

IndustryReturn1:12
ij = α · InformedijRushij + γ0 · Informedij + γ1 · Rushij + Controlsij + εij ,(5)
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where IndustryReturn1:12
ij is the mean monthly industry return over the 12 months following

fund i's SubResTime; Controlsij include vintage j �xed e�ects and (in speci�cations 3 and

4 only) Predictive covariates as of fund's i SubResTime; and εij is the unobservable error

term, spatially correlated across i and j. Across all panels, the odd and even speci�cations

of SubResTime is based on, respectively, 15% and 20% NAV thresholds.

Informedij is a dummy that denotes the fund group of interest. In panel A, these are

funds that satisfy both toDateTTR>1 and toDateIRR>Hurdle at SubResTime, as coded by

the interaction of the respective dummies. Funds that don't satisfy either of the criteria are

considered Uninformed and serve as the control group. Hence, the identifying assumption

in this setup is that Informed exits have same Footprint-on-Firms, as do Uninformed exits.

[Place Table 4 here]

Panel A shows that the main parameter of interest�the coe�cient on the interaction

between Informed and Rush, α�is signi�cantly negative across all speci�cation. The magni-

tude of α indicates how much lower a monthly returns is expected if Informed Rush increases

from zero to one. The inter-quartile range for Rush of approximately 0.3 translates into 0.3%

to 0.7% lower return per month for 12 months.

The magnitude of α estimates is about twice as large in speci�cations (1) and (2) as

compared to those in (3) and (4), indicating that substantial variation in Informed Rush could

be explained by publicly observable signals about expected returns (and/or exit conditions

predictive of returns). This fact suggests that GPs tend to not distribute capital back to

LPs when observables point to elevated risk premia (consistent with the results in Robinson

and Sensoy, 2013). Nonetheless, as follows from speci�cations (3) and (4), the exit decisions

by skilled and incentivized GPs contain a signi�cant component that appears to be missing

in the public information set.

Panel B breaks down the Informed-dummy into its constituents, toDateTTR>1 and

toDateIRR>Hurdle, and examines the e�ect of each interaction with Rush separately (i.e,

α0 and α1 in model 4). For example, the coe�cient on toDateTTR>1×Rush measures the
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predictive e�ect of Rush by funds that appear skilled but do not have �skin in the game��for

their GPs there is no in-the-money option that may vanish before the normal resolution time

is past due. We see that none of these individual conditions has Rush associated with lower

subsequent returns. However, the negative coe�cients on toDateTTR>1×IRR>Hurdle×Rush

gets stronger than in Panel A. This result also indicates that TTR is a good proxy of GPs'

market timing skill, as it signi�cantly predicts funds' propensity to sell at industry highs.

Panel C examines whether the return predictability strengthens when the actual portfolio

of the fund is more concentrated in the focal industry, as suggested by the exit TTR analysis

in Table 3. I interact the Informed dummy as de�ned for panel A with a dummy indicating

whether the focal industry comprises more than 50% of the actual investments made by the

fund. The panel shows that Rush by incentivized and skilled GPs with more concentrated

portfolios is not more informative of the future return in the focal industry than similar Rush

by holders of more dispersed portfolios. The coe�cients on Rush-interactions with Declared

Ind.>50%P. are negative but far from being statistically signi�cant individually or jointly.13

I carefully examine the sensitivity of inference to di�erent types of the dependency in εij.

I follow Conley (1999) to model the spatial correlation between the return intervals arising

from the proximity of SubResTime; I also cluster by vintage year as Kaplan and Schoar

(2005) and in two dimensions simultaneously. As shown in Table A.3, (i) the standard errors

reported in Table 4 tend to be the largest, and (ii) estimated αs remain negative at the 5%

(or better) con�dence level for each of the seven inference methods considered.

Next, I scrutinize the claim that fund heterogeneity does not drive the results in Table 4.

First, I examine if clustering of fund distributions at least a year away from SubResTime also

results in predictability of industry returns. The alternative explanation�that the inher-

ent heterogeneity across funds makes their distribution patterns potentially incomparable�

predicts α to be di�erent from zero away from SubResTime as well. However, these placebo

tests reported in Table A.4 reveal no statistically or economically signi�cant coe�cients.

13 In an untabulated analysis, I �nd that Declared Ind.>50%P.×Rush has a t-statistics of -1.5 if used in
place of Informed-dummy in eq. (5).
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Second, I implement the fuzzy RDD with the fund distance of toDateIRR from the

Hurdle as a forcing variable. Naturally, the di�erence determines the assignment of Informed-

indicator, while GPs have limited ability to manipulate performance via NAV reports when

the funds are substantially resolved. Table A.6 reveals that the inclusion of the third-order

polynomial of the forcing variable does not move the point estimate on α from −0.013 in

speci�cation (3) of Table 4 and barely increases the standard error estimate. Table A.6 also

shows that α estimates remain well within the baseline standard deviation when the sample

heterogeneity is reduced. For example, when IRRs are within 2.5% from the Hurdle, α is

estimated at −0.011, although the standard error increases to 0.016 as the sample shrinks

to just 108 funds. It is noteworthy that the carry approximation error embedded in my data

should be particularly costly for the power in such discontinuity-based tests.

[Place Figure 3 here]

Third, I conduct event studies to mitigate Price Distortion concerns. Figure 3 reports

the cumulative Industry returns around SubResTime based on the 15% NAV threshold for

funds with Rush above the vintage year median. The solid line represents the mean returns

around Informed exits, de�ned as satisfying both toDateTTR>1 and toDateIRR>Hurdle.14

Panel A of the �gure reports the results for the entire sample period, while Panel B shows

that a clear di�erence remains even after excluding two years with particularly dramatic

declines (2001 and 2008). The �gure indicates that the industry returns' dip following

Informed Rush does not revert back over the 10-quarter horizon. A reversion would be

expected if the underperformance were driven by Price Distortion, whereby selling pressure

was not followed by a deterioration in the industry fundamentals.

[Place Figure 4 here]

Finally, I run a calendar time portfolio analysis with the fund industry sectors. Figure 4

and Table A.5 show that a quarterly rebalanced portfolio based on Informed Rush yields a

14 The sample median Rush is 0.2. A total of 205 funds (i.e., just under a quarter of the sample) satisfy all
three conditions: TTR>1, IRR>Hurdle, and Rush>0.2. Internet Appendix shows that a regression analysis
with a binary Rush de�nition yields results very close to Table 4 and reports additional event studies.
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statistically signi�cant 80 basis points per quarter over the Fama-French three-factor model

and 30�40% higher annualized Sharpe ratios than those of the equally weighted portfolio of

industries. It is therefore highly unlikely that di�erences in future risk realizations across

industries are responsible for inference about α from regression (5). These results also prove

that industry timing is more salient than market-wide timing, regardless of whether the

portfolio of industries is value-weighted or equally weighted.

B.2. Informed Rush versus Random

To obtain stronger evidence against the Pseudo Timing alternative, I also estimate regres-

sion (5) with random (hypothetical) SubResTime and Rush as a control group. In particular,

I seek to mitigate concerns that the residual variation in Rush examined in section IV.B.2

merely re�ects non-linear and interaction e�ects of Predictive covariates.

I jointly model Rush and SubResTime and simulate multiple hypothetical exits for each

actual fund.15 The resulting permutations enable fund �xed e�ects that re�ect a rich set of

fund characteristics and the variation in exit conditions during the times they have operated

(see Table B.1). Since these absorb signi�cant variation in risk premia over time, the inference

should be less sensitive to the inclusion of Predictive covariates and, hence, to the omission

of some potentially relevant predictors.

The advantage of the random control group with respect to the superior measurement of

EPt [Marketi,t+1] comes at a cost of a stronger identifying assumption required with respect

to the potential causal e�ects of PE exits on public equities. Speci�cally, for this setup to

recover α as in models (3�4), PE fund exits must have neither Footprint-on-Firms nor Price

Distortion. Therefore, it is important to view the analysis in Table 5 in the context of the

results established in the previous section.

To begin, Panel A of Table 5 shows what we could not learn when the control group

15 The procedure is asymptotically equivalent to the Simulated Method of Moments, accounts for uncer-
tainty of auxiliary model parameter estimates, and involves three steps: (i) estimating a model of fund
�xed e�ects for SubResTime and Rush, (ii) independently simulating 1,000 blocks of 100 random exits per
fund and estimating the main model (i.e., equation 5) within each block, and (iii) pooling the main model
estimates over these independent simulations. See Internet Appendix for details.
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comprised actual funds�whether aggregate PE distributions predict future industry returns

unconditionally on GP incentives. Consistent with results in Ball et al. (2011), the coe�cient

on ActualFund×Rush, while negative, is economically small and statistically insigni�cant.

However, the estimates in panels B and C, in which I limit the actual fund groups to match

the Informed dummy de�nitions used in Table 4, strongly support the presence of selection

on superior information in PE fund exits.

[Place Table 5 here]

As in Table 4, speci�cations (1) and (2) of Table 5 correspond to SubResTime under the

15% and 20% thresholds for the �xed-e�ects-only model, whereas speci�cations (3) and (4)

also include Predictive covariates. Unlike in Table 4, the point estimates with Predictive

covariates included are very close to those with just the �xed e�ects�between 0.014 and

0.017 for α. This result means that the projections of fund �xed e�ects for SubResTime and

Rush indeed absorb much of their joint variation with Pseudo-timing factors, alleviating the

regression and factor misspeci�cation concerns.

I scrutinize the robustness and statistical properties of this simulation-based estimator.

Speci�cally, I verify (i) that α-estimates are largely insensitive and statistically robust to

the exclusion of various permutations of vintage and exit years (see Figure B1), and (ii)

that, while �tted values of Informed Rush never predict returns, the actual size of the tests

based on asymptotic standard errors is close to the nominal size (Figure B2, panels A and

B). By contrast, in panel C of Figure B2, I show that the return predictability vanishes for

industries that did not correlate with the funds' primary industry in the recent past.

Importantly, Panel B and C of Table 5 are the simulation-based counterparts of Panel

A and B of Table 4 with directly comparable magnitudes. From this comparison, it follows

that (i) Footprint-on-Firms e�ects are likely negligible for PE fund exits (since estimates

in columns 3�4 match closely across tables), and (ii) superior information explains 52�69%,

with the remainder attributable to Pseudo-timing. However, because of the false-negative

bias in measuring exit incentives, this analysis likely overstates the share of Pseudo-timing
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somewhat.

B.3. Predictability Sources

In this section, I seek to understand which sources of the industry return formation

process are likely responsible for the predictability results established in the previous sections.

Per Campbell and Shiller (1988), the unexpected asset returns can be decomposed into (i)

the revision of expectations about current and future cash �ows it pays (≡ NCF,t+1), and (ii)

the revision in expectations about future discount rates the investors require (≡ NDR,t+1):

rt+1 − Etrt+1 = (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+1+j(6)

= NCF,t+1 −NDR,t+1 ,

where ρ = 1/ed−p and dt (pt) is the asset log dividend (price) in period t, while rt is the log

rate of return for the period.

Given GPs' potential involvement in the operational management of their portfolio com-

panies and their special position in the capital market as �rsthand observers of portfolio

demands of large public and private investors, both NCF,t+1 and NDR,t+1 can be at play. To

account for the correlation between these sources of returns while maintaining the identi-

�cation framework outlined in section IV.A, I use two-stage least squares to estimate the

following equation:

E[Rushij] = αR[Informedij IndustryRerturn1:12
ij ×Informedij IndustryReturn1:12

ij ] + Controlsij .(7)

Thus, relative to the preceding analyses, I swap returns with Rush as the outcome variable,

so that equation (7) can be thought of as equation (5) but written in the standard causal

inference framework with the identifying assumption that future returns cause past Rush.

Meanwhile, instrumenting the return terms (rather using the reduced form) insures that

inference accounts for the measurement error in the proxy of NCF,t+1 and/or NDR,t+1.

I use the industry unexpected earnings to proxy for NCF,t+1 and changes in the ratios

of index values to the earning forecasts to proxy for NDR,t+1. Both variables are computed
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from analyst estimates aggregated to the respective S&P500 subindex (see section II). Ac-

cordingly, the instruments' validity hinges on (i) this proxy of cash �ow and discount rate

news being indeed related to the industry return realizations tightly enough, and (ii) Rush

being unrelated to cash �ow and discount rate news through other channels.

[Place Table 6 here]

Table 6 reports the results. First-stage regression results are summarized by the Kleibergen-

Paap Wald test statistics, which levels suggest that the excluded instruments are indeed

relevant. All speci�cations include Predictive covariates (Appendix C). Speci�cations (1)

and (3) use the actual fund exits as control group, corresponding to the approach in Table 4,

while speci�cations (2) and (4) use hypothetical fund exits, as in Table 5.

In speci�cations (1) and (2), the excluded instruments are IndEPSsurprise and its inter-

action with the Informed dummy, while IndForwardMult∆ and its interaction with Informed

are added to the �rst- and second-stage regressions along with other covariates. Signi�cantly

negative coe�cients of Informed×IndustryReturn indicate that skilled GPs foresee the in-

dustry cash �ow news that cause the industry returns to fall. These estimates suggest that

the industry earnings surprise that triggers a 10% drop in the industry return causes a 25�38

percentage point higher Informed Rush over the preceding six quarters.

Speci�cations (3) and (4) use the terms with IndForwardMult∆ as excluded instruments

while including IndEPSsurprise in the set of other covariates. Hence, these tests show

whether GPs foresee innovations in the discount rates that investors require beyond the varia-

tion in the industry earning news. Although the point estimates on Informed×IndustryReturn

and IndustryReturn are negative according to speci�cation (3), they are far from being sig-

ni�cant statistically. Furthermore, these coe�cients are not even negative (and still insignif-

icant) according to speci�cation (4), which uses hypothetical exits as the control group.

It therefore appears that GPs' forecasting edge is limited to the cash �ow process in

the industry of specialization, while their capital market activities do not yield important

insights about swings in the marginal investor's risk preferences. This is consistent with the
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predictability of returns vanishing outside the native industry, as discussed in section IV.B.2.

I also examine whether the simultaneity of Rush and Informed variables is a relevant

concern. I �nd similar results if both IndustryReturn and Informed are instrumented with,

respectively, IndEPSsurprise and the propensity score determined by the performance of the

current fund's peers and the GP's previous fund TTR. The exclusion restrictions for this test

are: (i) industry future earning surprises do not a�ect the fund exits today except through

GP's industry return outlook, and (ii) strategy-by-vintage median �luck� does not a�ect the

fund exits today except through the odds that the fund carry is in-the-money. This analysis

is reported in Internet Appendix.

V. Conclusion

In this paper, I show that GPs appear to be more informed about industry valuations

than marginal investors in public markets are. This informational advantage creates value

for LPs beyond what the literature has analyzed. GPs' learning through the private invest-

ment/divestment process appears to be the source of this knowledge, lending itself to an

increased ability to time industry peaks and troughs. This skill persists and pertains to the

industry cash �ow fundamentals, as measured by public �rms' earnings news.

My tests isolate GPs' likely superior information from reactions to time-varying market

conditions and certain causal e�ects of PE activity spillovers on public �rm policies. However,

such informed trading by GPs is unlikely to go completely unnoticed by other investors.

As a result, PE activities may increase the informational e�ciency of the capital market,

providing a channel for how private information becomes impounded into public market

prices, as studied in Asriyan et al. (2017).

32

Electronic copy available at: https://ssrn.com/abstract=2802640



References

Acharya, V. V., O. F. Gottschalg, M. Hahn, and C. Kehoe. 2013. Corporate governance and value
creation: Evidence from private equity. The Review of Financial Studies 26:368�402.

Agarwal, V., W. Jiang, Y. Tang, and B. Yang. 2013. Uncovering hedge fund skill from the portfolio
holdings they hide. The Journal of Finance 68:739�783.

Aldatmaz, S., and G. W. Brown. 2020. Private equity in the global economy: Evidence on industry
spillovers. Journal of Corporate Finance 60:101524.

Ang, A., B. Chen, W. N. Goetzmann, and L. Phalippou. 2018. Estimating private equity returns
from limited partner cash �ows. The Journal of Finance 73:1751�1783.

Ang, A., D. Papanikolaou, and M. M. Wester�eld. 2014. Portfolio choice with illiquid assets.
Management Science 60:2737�2761.

Asriyan, V., W. Fuchs, and B. Green. 2017. Information spillovers in asset markets with correlated
values. American Economic Review 107:2007�40.

Axelson, U., T. Jenkinson, P. Strömberg, and M. S. Weisbach. 2013. Borrow cheap, buy high? The
determinants of leverage and pricing in buyouts. The Journal of Finance 68:2223�2267.

Ball, E., H. H. Chiu, and R. Smith. 2011. Can VCs time the market? An analysis of exit choice for
venture-backed �rms. The Review of Financial Studies 24:3105�3138.

Ben-David, I., J. Birru, and A. Rossi. 2019. Industry familiarity and trading: Evidence from the
personal portfolios of industry insiders. Journal of Financial Economics 132:49�75.

Bernstein, S., J. Lerner, M. Sorensen, and P. Strömberg. 2016. Private equity and industry perfor-
mance. Management Science 63:1198�1213.

Bollen, N. P., and B. A. Sensoy. 2016. How much for a haircut? Illiquidity, secondary markets, and
the value of private equity. Vanderbilt University working paper.

Bradley, D., S. Gokkaya, and X. Liu. 2017. Before an analyst becomes an analyst: Does industry
experience matter? The Journal of Finance 72:751�792.

Brown, G., R. Harris, T. Jenkinson, S. Kaplan, and D. Robinson. 2015. What Do Di�erent Data
Sets Tell Us About Private Equity Performance? Kenan Institute Research paper.

Brown, G. W., E. Ghysels, and O. Gredil. 2020. Nowcasting Net Asset Values: The Case of Private
Equity. University of North Carolina working paper .

Brown, G. W., O. R. Gredil, and S. N. Kaplan. 2019. Do Private Equity Funds Manipulate Returns?
Journal of Financial Economics 132:267�297.

Brown, G. W., R. S. Harris, W. Hu, T. Jenkinson, S. N. Kaplan, and D. T. Robinson. Forthcominig.
Can Investors Time Their Exposure to Private Equity? Journal of Financial Economics .

Brown, K. C., W. V. Harlow, and L. T. Starks. 1996. Of tournaments and temptations: An analysis
of managerial incentives in the mutual fund industry. The Journal of Finance 51:85�110.

Campbell, J. Y., and R. J. Shiller. 1988. The dividend-price ratio and expectations of future
dividends and discount factors. The Review of Financial Studies 1:195�228.

Cao, J., and J. Lerner. 2009. The performance of reverse leveraged buyouts. Journal of Financial
Economics 91:139�157.

Chen, Y., and B. Liang. 2007. Do market timing hedge funds time the market? Journal of Financial
and Quantitative Analysis 42:827�856.

33

Electronic copy available at: https://ssrn.com/abstract=2802640



Chiappori, P., and B. Salanie. 2000. Testing for Asymmetric Information in Insurance Markets.
Journal of Political Economy 108:56�78.

Chung, J.-W., B. A. Sensoy, L. Stern, and M. S. Weisbach. 2012. Pay for performance from future
fund �ows: The case of private equity. The Review of Financial Studies 25:3259�3304.

Conley, T. G. 1999. GMM estimation with cross sectional dependence. Journal of Econometrics
92:1�45.

Copeland, T. E., and D. Mayers. 1982. The value line enigma (1965�1978): A case study of
performance evaluation issues. Journal of Financial Economics 10:289�321.

Da Rin, M., and L. Phalippou. 2017. The importance of size in private equity: Evidence from a
survey of limited partners. Journal of Financial Intermediation 31:64�76.

Ferson, W., and K. Khang. 2002. Conditional performance measurement using portfolio weights:
Evidence for pension funds. Journal of Financial Economics 65:249�282.

Ferson, W. E., and R. W. Schadt. 1996. Measuring fund strategy and performance in changing
economic conditions. The Journal of �nance 51:425�461.

Finkelstein, A., and K. McGarry. 2006. Multiple dimensions of private information: evidence from
the long-term care insurance market. American Economic Review 96:938�958.

Gantchev, N., O. R. Gredil, and C. Jotikasthira. 2019. Governance under the Gun: Spillover E�ects
of Hedge Fund Activism. Review of Finance 23:1031�1068.

Gompers, P., S. N. Kaplan, and V. Mukharlyamov. 2016. What do private equity �rms say they
do? Journal of Financial Economics 121:449�476.

Gompers, P. A. 1996. Grandstanding in the venture capital industry. Journal of Financial economics
42:133�156.

Gompers, P. A., W. Gornall, S. N. Kaplan, and I. A. Strebulaev. 2020. How do venture capitalists
make decisions? Journal of Financial Economics 135:169�190.

Gri�n, J. M., and J. Xu. 2009. How smart are the smart guys? A unique view from hedge fund
stock holdings. The Review of Financial Studies 22:2531�2570.

Grinblatt, M., and S. Titman. 1989. Mutual fund performance: An analysis of quarterly portfolio
holdings. Journal of Business pp. 393�416.

Grinblatt, M., and S. Titman. 1993. Performance measurement without benchmarks: An examina-
tion of mutual fund returns. Journal of Business pp. 47�68.

Guo, S., E. S. Hotchkiss, and W. Song. 2011. Do buyouts (Still) create value? The Journal of
Finance 66:479�517.

Harford, J., and A. Kolasinski. 2013. Do private equity returns result from wealth transfers and
short-termism? Evidence from a comprehensive sample of large buyouts. Management Science
60:888�902.

Harford, J., J. Stan�eld, and F. Zhang. 2019. Do insiders time management buyouts and freezeouts
to buy undervalued targets? Journal of Financial Economics 131:206�231.

Harris, R. S., T. Jenkinson, and S. N. Kaplan. 2014. Private equity performance: What do we
know? The Journal of Finance 69:1851�1882.

Henriksson, R. D., and R. C. Merton. 1981. On market timing and investment performance. II.
Statistical procedures for evaluating forecasting skills. Journal of Business pp. 513�533.

Hüther, N., D. T. Robinson, S. Sievers, and T. Hartmann-Wendels. 2020. Paying for performance in
private equity: Evidence from venture capital partnerships. Management Science 66:1756�1782.

34

Electronic copy available at: https://ssrn.com/abstract=2802640



Jenkinson, T., S. Morkoetter, and T. Wetzer. 2018. Buy Low, Sell High? Do Private Equity Fund
Managers Have Market Timing Abilities? Unpublished working paper. Oxford University.

Jenter, D. 2005. Market timing and managerial portfolio decisions. The Journal of Finance 60:1903�
49.

Jiang, G. J., T. Yao, and T. Yu. 2007. Do mutual funds time the market? Evidence from portfolio
holdings. Journal of Financial Economics 86:724�758.

Kacperczyk, M., C. Sialm, and L. Zheng. 2005. On the industry concentration of actively managed
equity mutual funds. The Journal of Finance 60:1983�2011.

Kaplan, S. N., and A. Schoar. 2005. Private equity performance: Returns, persistence, and capital
�ows. The Journal of Finance 60:1791�1823.

Kaplan, S. N., and P. Strömberg. 2009. Leveraged buyouts and private equity. Journal of Economic
Perspectives 23:121�46.

Korteweg, A., and S. Nagel. 2016. Risk-Adjusting the Returns to Venture Capital. The Journal of
Finance 71:1437�1470.

Korteweg, A., and S. Nagel. 2018. Risk-Adjusted Returns of Private Equity Funds: A New Ap-
proach. University of South California working paper.

Korteweg, A., and M. Sorensen. 2017. Skill and luck in private equity performance. Journal of
Financial Economics 124:535�562.

Lerner, J. 1994. Venture capitalists and the decision to go public. Journal of Financial Economics
35.

Lerner, J., A. Leamon, and F. Hardymon. 2012. Venture Capital, Private Equity, and the Financing
of Entrepreneurship. New York, NY: John Wiley & Sons.

Lettau, M., and S. Ludvigson. 2001. Consumption, aggregate wealth, and expected stock returns.
The Journal of Finance 56:815�849.

Metrick, A., and A. Yasuda. 2010. The Economics of Private Equity Funds. The Review of Financial
Studies 23:2303�2341.

Pástor, L., and P. Veronesi. 2005. Rational IPO waves. The Journal of Finance 60:1713�1757.

Robinson, D. T., and B. A. Sensoy. 2013. Do private equity fund managers earn their fees? Com-
pensation, ownership, and cash �ow performance. The Review of Financial Studies 26:2760�2797.

Robinson, D. T., and B. A. Sensoy. 2016. Cyclicality, performance measurement, and cash �ow
liquidity in private equity. Journal of Financial Economics 122:521�543.

Schultz, P. 2003. Pseudo market timing and the long-run underperformance of IPOs. The Journal
of Finance 58:483�518.

Sta�ord, E. 2017. Replicating private equity with value investing, homemade leverage, and hold-
to-maturity accounting. Unpublished working paper. Harvard University.

Thompson, S. B. 2011. Simple formulas for standard errors that cluster by both �rm and time.
Journal of Financial Economics 99:1�10.

Timmermann, A., and D. Blake. 2005. International asset allocation with time-varying investment
opportunities. The Journal of Business 78:71�98.

Welch, I., and A. Goyal. 2008. A comprehensive look at the empirical performance of equity premium
prediction. The Review of Financial Studies 21:1455�1508.

Wermers, R. 2011. Performance Measurement of Mutual Funds, Hedge Funds, and Institutional
Accounts. The Annual Review of Financial Economics is 3:537�74.

35

Electronic copy available at: https://ssrn.com/abstract=2802640



Figure 1

Timing Track Records: univariate analysis

This �gure summarizes the distributional properties of the sample TTRs, which measure a fund's gross-
return due to selling near the market peaks and buying near the troughs. Panel A left (right) chart shows
the frequency distributions of TTRs for buyout (venture) funds using the complete history of the fund cash
�ows. Lines and text indicate the sample means and a two-sided test for their equality to one (i.e., the null
hypothesis of no abnormal returns due to timing, **/*** denote signi�cance at 5/1%). Panel B reports
the variance decomposition of end-of-life money multiples adjusted for the trend in the Industry into the
selection (as measured by log PME) and timing as measured by log TTRs. `Full Sample' indicates all funds
(buyout and venture), other three columns report results by subsample based on the relative rank of the
fund's PME within fund type (venture or buyout) and vintage year. Panel C, breaks down the variation in
TTR into two sources � entry and exit (per eq. 1) similarly for the full sample and subsamples. Table 1
describes the sample, Appendix C de�nes the variables.

Panel A: TTRs by fund type

Panel B: Variance decomposition of funds total returns

Panel C: Variance decomposition of funds TTRs
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Figure 2

Sample fund TTRs: Fifth anniversary versus Final

This �gure compares the sample funds toDateTTR as of �fth year since inception with their end-life TTRs
(Panel A) and reports the post-�fth year growth conditional on the fund's �fth anniversary IRR being above
[below] the Hurdle rate (8% for buyouts and 0% for venture funds) in Panel B [C]. TTR measures fund's
gross-return due to selling near the market peaks and buying near the troughs. Table 1 describes the sample,
Appendix C de�nes the variables. Results are reported separately by buyout and venture subsamples in,
respectively, left-hand and right-hand plots.

Panel A: Fifth anniversary versus end-life

Panel B: Post-interim growth if toDateIRR above the Hurdle rate

Panel C: Post-interim growth if toDateIRR below the Hurdle rate
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Figure 3

Informed Rush and Industry returns: Event Studies

This �gure plots cumulative return on Industry portfolio around SubResTime for funds with Rush above
vintage year medians. Rush measures the intensity of fund's distributions to LPs right before SubResTime,
based on 15% NAV threshold. The medians are computed by fund type (venture or buyout) and vintage year.
The solid line (Informed Rush) is the mean across Informed funds that have incentives and market-timing
skill, as measured by both toDateTTR>1 and toDateIRR>HR as of SubResTime. The dashed line comprise
of all other funds. Panel A reports results for the full sample. Panel B excludes SubResTime that occurred
in 2001 and 2008. The bars denote 95% con�dence intervals. Table 1 describes the sample, Appendix C
de�nes the variables.

Panel A: Full Sample of Exits: 1990-2013

Panel B: Excluding Extremes: 2001 and 2008
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Figure 4

Calendar Time Portfolios: Cumulative Returns

This �gure compares cumulative returns and Sharpe ratios for two portfolios. Portfolio A is equally-weighted
10 S&P500 GICS sector portfolio. Portfolio B sells GICS sectors for which two or more Informed funds
exhibited above-median Rush right before their SubResTime over the past 3 or 7 quarters (i.e. [0,+2q] or
[0,+6q] observation window respectively) and buys the remaining sectors (equally-weighted). Informed are
funds with incentives and market-timing skill, as measured by both toDateTTR>1 and toDateIRR>HR as
of SubResTime, based on the 15% NAV threshold. Rush measures the intensity of fund's distributions to
LPs right before SubResTime. The medians are computed by fund type (venture or buyout) and vintage
year. Table 1 describes the sample, Appendix C de�nes the variables. Table A.5 reports abnormal return
estimates of Portfolio B as well as `B minus A' against Fama-French three-factor model.
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Table 1

Summary Statistics

This table reports summary statistics for the data used in this study. Panel A reports sequence order,
vintage year, life since inception, size, and the last-most performance statistics for 349 (592) U.S.-focused
buyout (venture) funds of which 126 (169) continue operations as of March 2013. Overall and Industry
Sequence report the fund chronological order of the inception date within GP and GP-industry respectively
or zeros when fund's GP a�liation is not available (�15% of sample funds). IRR stands for internal rate of
return. PME vs Industry denotes Kaplan and Schoar (2005) Public Market Equivalent index computed using
S&P500 subindex corresponding to the GICS sector of the fund specialization. Panel B reports statistics for
monthly returns, price-to-earning and book-to-market ratios of these subindexes for the period from January
1989 through October 2013. Panel C reports statistics for the rest of the variables used in this study.

Panel A1: PE funds

Variable Mean SD p1 p5 p25 p50 p75 p95 p99

B
u
y
o
u
t

Overall Sequence 3.0 2.7 0.0 0.0 1.0 2.0 4.0 9.0 12.0
Industry Sequence 2.1 1.7 0.0 0.0 1.0 2.0 3.0 6.0 8.0
Vintage Year 1996 5 1982 1986 1994 1997 2000 2003 2005
Life in Quarters 48 11 20 30 41 48 55 65 81
Fund Size ($mln) 745 955 25 60 160 400 910 2920 5000
IRR 0.165 0.227 -0.195 -0.077 0.060 0.130 0.225 0.488 1.017
Money Multiple 13.32 181.21 0.52 1.00 1.69 2.28 3.44 8.69 51.92
PME vs Industry 1.34 0.87 0.26 0.48 0.87 1.24 1.63 2.48 3.08

V
e
n
tu
re

Overall Sequence 3.1 2.8 0.0 0.0 1.0 2.0 4.0 9.0 13.0
Industry Sequence 2.7 2.5 0.0 0.0 1.0 2.0 4.0 8.0 11.0
Vintage Year 1993 6 1980 1982 1987 1994 1999 2001 2003
Life in Quarters 49 11 23 33 42 49 56 68 78
Fund Size ($mln) 156 178 11 19 47 98 190 510 850
IRR 0.227 0.524 -0.248 -0.155 0.004 0.094 0.222 1.107 2.735
Money Multiple 4.42 6.49 0.36 0.78 1.69 2.69 4.33 13.74 37.65
PME vs Industry 1.38 1.69 0.13 0.32 0.62 0.99 1.45 3.68 10.22

Panel A2: Funds sample by industry and vintage year

'79-83 '84-86 '87-89 '90-92 '93-94 '96-98 '99-01 '02-06 Total

Consumer Discretionary 6 7 6 7 19 30 32 9 116
Consumer Staples 0 1 1 0 2 3 7 1 15
Energy 0 0 1 1 0 3 3 1 9
Financials 3 2 5 1 8 12 14 2 47
Healthcare 5 11 21 15 25 39 32 8 156
Industrials 16 28 37 15 17 31 31 9 184
Internet Technology 27 35 39 20 48 83 95 9 356
Meterials 0 0 1 0 1 4 2 1 9
Telecommunications 2 2 4 4 6 13 17 1 49
Utilities 0 0 0 0 1 0 0 0 1

Total 59 86 115 63 127 218 233 49 942
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Table 1�Continued

Panel B: Industry benchmarks returns an ratios

Returns Book-to-Market Price-to-Earnings

Mean SD Skew Mean p25 p75 Mean p25 p75

Consumer Discretionary 0.009 0.052 -0.737 0.379 0.319 0.438 27.0 15.7 22.9
Consumer Staples 0.009 0.040 -1.047 0.238 0.178 0.291 20.1 15.9 21.1
Energy 0.010 0.053 -0.397 0.438 0.358 0.521 17.6 12.4 19.4
Financials 0.007 0.065 -0.984 0.629 0.467 0.840 24.6 12.8 17.7
Healthcare 0.010 0.047 -0.461 0.247 0.165 0.320 20.0 15.9 21.3
Industrials 0.009 0.046 -1.107 0.323 0.283 0.369 23.3 16.7 27.2
Internet Technology 0.008 0.072 -0.796 0.327 0.224 0.451 27.5 15.2 35.6
Materials 0.008 0.057 -0.627 0.424 0.359 0.460 23.6 14.8 28.4
Telecommunications 0.007 0.055 -0.402 0.406 0.280 0.509 21.0 15.6 23.0
Utilities 0.008 0.044 -0.616 0.554 0.484 0.678 15.2 12.3 16.7

Panel C: Other variables

Variable Mean SD p1 p5 p25 p50 p75 p95 p99

Market Return (*100) 0.95 4.53 -10.21 -7.42 -1.74 1.54 3.92 7.53 10.20
CAY Ratio (*100) 0.23 2.30 -3.35 -3.13 -2.08 0.51 2.25 3.46 3.96
CBOE VIX 20.4 7.8 10.9 11.7 14.9 18.9 23.9 34.5 46.4
BBB-AAA spread 0.98 0.40 0.55 0.60 0.73 0.90 1.14 1.44 3.00
AAA-UST spread 1.33 0.48 0.49 0.72 0.91 1.31 1.70 2.11 2.53
10-year yield (*100) 5.45 2.04 1.68 2.01 3.96 5.28 7.09 8.86 9.26
3-month yield (*100) 3.56 2.46 0.02 0.04 1.13 4.14 5.33 7.64 8.43
IndEPSsurprise 0.02 0.77 -1.43 -1.22 -0.59 0.03 0.62 1.29 1.56
IndForwardMult∆ -0.01 0.83 -1.66 -1.37 -0.61 -0.05 0.58 1.47 1.71
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Table 2

Timing Track Records: Associations and Persistence

This table reports regression estimates of the log of funds' end-life TTRs on a set of fund/GP characteristics.
TTR measures the gross-return due to selling near the market peaks during the fund life-time and buying
near the troughs. Table 1 describes the sample, Table Appendix C de�nes key variables. The explanatory
variables are all in logs: `Fund size' [`Fund size squared'] � size [size-squared] of the fund dollar amount of
capital committed; `Sequence' � chronological order of the fund inception date within same GP; `PME' �
the fund's PME ; `Previous fund TTR' � the GP's previous fund TTR. Speci�cations (2) through (6) include
fund vintage �xed e�ects. Table A.1 reports additional speci�cations and robustness. Standard errors in
parentheses are clustered by GP, */**/*** denote signi�cance at 10/5/1% con�dence level.

(1) (2) (3) (4) (5) (6)

Fund size 0.515*** 0.082
(0.162) (0.150)

Fund size squared −0.014*** −0.003
(0.004) (0.004)

Fund sequence 0.057*** 0.049*** 0.040** 0.055**
(0.021) (0.018) (0.017) (0.024)

Fund PME 0.040*** 0.059*** 0.054***
(0.015) (0.020) (0.020)

Previous fund TTR 0.135** 0.115** 0.107**
(0.052) (0.051) (0.049)

Vintage year �xed e�ects No Yes Yes Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.025 0.387 0.386 0.431 0.449 0.457
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Table 3

Timing Track Records: Entry versus Exit

This table reports regression estimates of the log of funds' Entry TTRs in Panel A and Exit TTRs in
Panel B on a set of fund/GP characteristics. TTR measures the gross-return due to selling near the market
peaks during the fund life-time and buying near the troughs, which can be broken down to the entry [exit]
components dues to the pattern of capital calls [distributions] as shown in equation 1. Table 1 describes the
sample, Table Appendix C de�nes key variables. The explanatory variables are: `TTR at 5th anniversary'
� the log of overall fund to-date-TTR measured as of the end of the 5th year since inception, `Declared
Ind.>50%P' � a dummy taking the value of 1 if a single industry represents more than 50% of the fund
investments made during its life-time, `Peers' entry [exit] TTR' � the log of the average entry [exit] TTR
computed across the fund's strategy × vintage peers (excluding the fund itself), `Previous fund TTR≥ 1'
� a dummy taking the value of 1 if the GP's previous fund TTR exceeded 1. Speci�cations (4) through
(6) include fund vintage �xed e�ects. Standard errors in parentheses are clustered by GP, */**/*** denote
signi�cance at 10/5/1% con�dence level.

Panel A: Entry TTR

(1) (2) (3) (4) (5) (6)

TTR at 5th anniversary 0.685***
(0.067)

Declared Ind.>50%P 0.024* 0.012 0.019
(0.014) (0.010) (0.012)

Peers' entry TTR 0.946*** 0.710***
(0.032) (0.109)

Previous fund TTR≥1 −0.038** −0.026*
(0.015) (0.015)

Vintage year �xed e�ects No No No Yes Yes Yes

Observations 941 941 886 802 941 756
R2 0.237 0.002 0.582 0.564 0.559 0.594

Panel B: Exit TTR

(1) (2) (3) (4) (5) (6)

TTR at 5th anniversary 0.398***
(0.067)

Declared Ind.>50%P −0.004 0.026* 0.029*
(0.018) (0.014) (0.016)

Peers' exit TTR 0.953*** 0.237**
(0.063) (0.111)

Previous fund TTR≥1 0.014 0.014
(0.019) (0.019)

Vintage year �xed e�ects No No No Yes Yes Yes

Observations 941 941 884 802 941 754
R2 0.057 0.000 0.261 0.497 0.474 0.505

Electronic copy available at: https://ssrn.com/abstract=2802640



Table 4

Informed Rush versus Uninformed

This table reports predictive regressions of Industry returns by Informed Rush, a proxy for the carried in-
terest �cashed-in� by GPs with a positive track record of market timing in the past:

E[IndustryReturn1:12
ij ] = α · Informedij ·Rushij + γ0 · Informedij + γ1 ·Rushij + βci + λj ,

where IndustryReturn1:12
ij is the mean monthly Industry return over 12 months following the fund i Sub-

ResTime, Rushij measures the intensity of fund's distributions to LPs right before SubResTime. Table 1
describes the sample, Table Appendix C�the variables. In Panel A, Informedij is a single indicator variable
denoting funds with both toDateTTR>1 and toDateIRR>HR as of SubResTime based on 20 (15)% residual
NAV threshold in even (odd) speci�cations. In Panel B, Informedij is a set of three indicator variables: for
toDateTTR>1 and toDateIRR>HR separately, and the interaction thereof. Panel C examines the interaction
of Informed fund de�nition from Panel A with the fund's portfolio actual industry concentration�Declared
Ind.>50%P takes the value of 1 if a single industry represents more than 50% of the fund investments made
during its lifetime (and 0 otherwise). In all panels, speci�cations (3) and (4) include Predictive covariates
(ci) in addition to the vintage year �xed e�ects (λj). Standard errors in parentheses are robust to het-
eroskedasticity and autocorrelation, */**/*** denote signi�cance at 10/5/1%. Table A.3 reports inference
results using other methods. Table A.4 reports placebo tests.

Panel A: Informed ≡ (toDateTTR>1)·(toDateIRR>HR)
15%thld 20%thld 15%thld 20%thld

(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush −0.025*** −0.023*** −0.013*** −0.013**
(0.007) (0.008) (0.005) (0.005)

toDateTTR>1 × toDateIRR>Hurdle 0.002 0.003 0.003 0.003
(0.003) (0.003) (0.002) (0.002)

Rush 0.004 0.002 0.007* 0.006*
(0.004) (0.004) (0.004) (0.004)

Controls:
Industry CAR −0.219 −0.224

(0.306) (0.276)
Industry P/E −0.005** −0.005**

(0.002) (0.002)
Industry B/M −0.037*** −0.023**

(0.013) (0.011)
CAY-ratio 0.549*** 0.521***

(0.132) (0.123)
CBOE VIX 0.040 0.036

(0.028) (0.028)

BAA-AAA spread 0.009 0.009
(0.007) (0.007)

AAA-UST spread −0.030*** −0.029***
(0.006) (0.005)

UST 10-year yield −0.009*** −0.010***
(0.002) (0.002)

UST 3-month yield −0.003*** −0.003**
(0.001) (0.001)

Vintage year �xed e�ects Yes Yes Yes Yes
Observations 894 942 893 941
R2 0.218 0.234 0.446 0.464

Electronic copy available at: https://ssrn.com/abstract=2802640



Table 4�Continued

Panel B: Informed ≡ (toDateTTR>1)+(toDateIRR>HR)+(toDateTTR>1)·(toDateIRR>HR)

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush −0.031** −0.024** −0.022** −0.021***
(0.013) (0.011) (0.010) (0.008)

toDateTTR>1 × Rush 0.006 0.001 0.008 0.004
(0.009) (0.006) (0.008) (0.006)

toDateIRR>Hurdle × Rush 0.001 0.001 0.004 0.009
(0.009) (0.009) (0.007) (0.007)

toDateTTR>1 × toDateIRR>Hurdle −0.002 −0.004 0.006* 0.005
(0.004) (0.004) (0.003) (0.003)

toDateTTR>1 −0.000 0.002 −0.002 −0.000
(0.003) (0.003) (0.003) (0.002)

toDateIRR>Hurdle 0.002 0.004 −0.003 −0.003
(0.003) (0.003) (0.003) (0.003)

Rush 0.002 0.000 0.003 0.001
(0.006) (0.006) (0.006) (0.005)

Controls: Same as in the respective column of Panel A
Observations 894 942 893 941
R2 0.064 0.064 0.446 0.466

Panel C: Interaction with Portf. composition, Informed ≡ (toDateTTR>1)·(toDateIRR>HR)

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Declared Ind.>50%P. × Informed × Rush −0.004 −0.004 −0.002 −0.001
(0.012) (0.014) (0.009) (0.010)

Informed × Rush −0.022*** −0.020** −0.012* −0.012*
(0.008) (0.009) (0.006) (0.007)

Declared Ind.>50%P. × Rush 0.004 −0.003 0.003 −0.003
(0.006) (0.006) (0.005) (0.006)

Declared Ind.>50%P. × Informed 0.004 0.005 0.004 0.003
(0.004) (0.005) (0.003) (0.004)

Informed −0.000 −0.000 0.001 0.001
(0.003) (0.004) (0.002) (0.003)

Declared Ind.>50%P. −0.003 −0.002 −0.003 −0.001
(0.002) (0.002) (0.002) (0.002)

Rush 0.002 0.004 0.005 0.008
(0.005) (0.005) (0.004) (0.005)

Controls: Same as in the respective column of Panel A
Observations 893 941 892 940
R2 0.219 0.237 0.447 0.466
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Table 5

Actual Rush versus Random

This table reports simulation-based estimates of predictive regressions of Industry returns by Informed Rush,
a proxy for the carried interest �cashed-in� by GPs with a positive track record of market timing in the past:

E[IndustryReturn1:12
ij ] = α · Informedij ·Rushij + γ0 · Informedij + γ1 ·Rushij + βci + λj ,

where IndustryReturn1:12
ij is the mean monthly Industry return over 12 months following the fund i Sub-

ResTime, Rushij measures the intensity of fund i distributions to LPs right before SubResTime. Table 1 de-
scribes the sample, Table Appendix C�the variables. The estimation proceeds in three steps: (i)�estimate
a model of fund �xed e�ects for SubResTime and Rush (auxiliary model, Table B.1), (ii)�independently
simulate 1,000 blocks of 100 random exits per fund under the auxiliary model, and (iii)�pool the main model
estimates over these independent simulations. In all panels, Informedij indicator equals one for actual funds
and zero for the simulated funds, even (odd) speci�cations report results results for SubResTime based on
20 (15)% residual NAV threshold, speci�cations (3) and (4) include Predictive covariates (ci) in addition
to fund �xed e�ects (λj) that re�ect expected SubResTime and Rush from the auxiliary model. Panel A
includes all actual funds in the sample along with the corresponding simulated funds. Panel B includes
actual funds with both toDateTTR>1 and toDateIRR>HR and the corresponding simulated funds. Panel
C includes actual funds with either toDateTTR>1 or toDateIRR>HR. Standard errors in parentheses are
robust to heteroskedasticity and autocorrelation, */**/*** denote signi�cance at 10/5/1%.

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Panel A: Informed ≡ All Actual Funds

ActualFund × Rush −0.006 −0.007 −0.005 −0.005
(0.004) (0.005) (0.005) (0.004)

# of Actual funds 893 941 893 941
Pseudo funds per 1 Actual 95.0 94.3 94.9 94.2

Panel B: Informed ≡ (toDateTTR>1)·(toDateIRR>HR)
toDateTTR>1 × toDateIRR>Hurdle × Rush −0.017*** −0.017** −0.016*** −0.014**

(0.006) (0.007) (0.006) (0.007)
# of Actual funds 373 387 373 387
Pseudo funds per 1 Actual 95.8 95.3 95.7 95.3

Panel C: Informed ≡ (toDateTTR>1)+(toDateIRR>HR)+(toDateTTR>1)·(toDateIRR>HR)
toDateTTR>1 × toDateIRR>Hurdle × Rush −0.032*** −0.026** −0.034*** −0.027***

(0.012) (0.012) (0.010) (0.010)
toDateTTR>1 × Rush 0.008 0.002 0.012 0.005

(0.009) (0.007) (0.007) (0.006)
toDateIRR>Hurdle × Rush 0.006 0.007 0.006 0.007

(0.005) (0.007) (0.005) (0.006)
# of Actual funds 756 791 756 791
Pseudo funds per 1 Actual 83.4 82.5 83.3 82.4

Applies to Each Panel:
# of independent simulations 1000 1000 1000 1000
Rush, Informed(D) Yes Yes Yes Yes
Fund �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes
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Table 6

What Are GPs Informed About?

Panel A of this table reports instrumental variable regression estimates of the following model:
E[Rushij ] = λRj + βcRij + αR

[
Informedij IndReturn1:12

ij ×Informedij IndReturn1:12
ij

]
,

where Rushij is a fraction of distributions over the last 6 quarters in fund's i total to-date; Informedij is an
indicator for the presence of incentives and market-timing skill (both toDateTTR>1 and toDateIRR>HR);
IndReturnij is the mean monthly return on publicly traded Industry benchmark over 12 months following
the fund i SubResTime, and aRj are the vintage year �xed e�ects. Table 1 describes the sample, Table Ap-
pendix C�the variables. In speci�cations (1) and (2), the excluded instruments are IndEPSsurprise and
its interaction with Informed -dummy, while IndForwardMult∆ and its interaction with Informed -dummy are
added to the 1st and 2nd stage regressions along with Predictive covariates and fund cohort �xed e�ects.
Therefore, speci�cations (1) and (2) test whether GPs foresee the industry cash �ow news and act accord-
ingly. While speci�cations (3) and (4) treat the terms with IndForwardMult∆ as excluded instruments�
while including IndEPSsurprise in the set of other covariates�and, therefore, test whether GPs foresee in-
novations in the discount rates at the industry level. IndEPSsurprise and IndForwardMult∆ are computed
from 12-month EPS forecasts for the respective S&P500 GICS subindex. Speci�cations (1) and (3) use other
sample funds as the control group and fund inception year �xed e�ects while speci�cations (2) and (4) use
hypothetical fund exits as the control group (reported are the pooled estimates across 1,000 simulations,
the methodology is described in section IV.B.2 and Internet Appendix). Standard errors in parentheses are
robust to heteroskedasticity and autocorrelation, */**/*** denote signi�cance at 10/5/1%.

Excluded Instrument : IndustryEPSsurprise IndustryForwardMult∆

(1) (2) (3) (4)

Informed(D) × IndustryReturn −3.825** −2.465** −1.194 0.846
(1.733) (1.042) (2.968) (2.569)

IndustryReturn 0.315 0.097 −1.517 0.300
(1.249) (0.228) (1.842) (0.343)

Informed(D) 0.012 0.017 −0.032 −0.025
(0.023) (0.038) (0.026) (0.015)

Included instrument IndustryForwardMult∆ IndustryEPSsurprise
Included instrument × Informed dummy Yes Yes Yes Yes
Predictive covariates Yes Yes Yes Yes
Control funds Actual Simulated Actual Simulated
Fixed e�ects Vintage Fund Vintage Fund

1st stage K-P Wald statistic 17.9 332.4 6.8 15.3
Observations 848 32,832 848 32,832
R2 (# of simulations) 0.158 (1,000) 0.15 (1,000)
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Appendix A. Additional Data and Results

This section reports additional PE fund data and analysis.

TTR and money multiple decomposition. Denote ∆ := ln(MM)− ln(PME) with MM be-

ing the fund's money multiple and PME de�ned as per equation (1) for a fund fully resolved

as of t = T :

PME =

∑T
t=0 Dte

−tr̄∑T
t=0 Cte

−tr̄
, where r̄ = r1:T/T .(A1)

Because ln(MM) = ln(
∑T

t=0Dt)− ln(
∑T

t=0Ct), we can write:

∆ = ln
(∑T

t=0Dt

)
− ln

(∑T
t=0Ct

)
−
[
ln
(∑T

t=0Dte
−tr̄)− ln(∑T

t=0 Cte
−tr̄)]

= ln(
∑T

t=0Dt/
∑T

t=0Dte
−tr̄)− ln(

∑T
t=0 Ct/

∑T
t=0 Cte

−tr̄) .(A2)

Without loss of generality, assume that only one capital call has been made�in the

beginning, i.e. C0 > 0, Ct = 0 ∀t > 0, so that
∑T

t=0Ct/
∑T

t=0Cte
−tr̄ = 1.

∆ = r̄ · FundDuration so long as:∑T
t=0 Dt∑T

t=0Dte−tr̄
− 1 ' r̄ ·

∑T
t=0 t ·Dte

−tr̄∑T
t=0 Dte−tr̄

⇐⇒
T∑
t=0

Dt −
T∑
t=0

Dte
−tr̄ '

T∑
t=0

tr̄ ·Dte
−tr̄ .(A3)

It therefore has to be that:

T∑
t=0

Dt(1− e−tr̄)−
T∑
t=0

tr̄ ·Dte
−tr̄ ' 0

→
T∑
t=0

Dt[1− (e−tr̄ + tr̄ · e−tr̄)] ' 0 .(A4)

Condition (A4) is true whenever 1 + tr̄ ' etr̄ and, since PME = PME · TTR by de�nition,

equation (1) is equivalent to equation (2).
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Table A.1

TTR Cross-section: Robustness and Placebo

This table reports regression estimates of the log of funds' end-life TTRs on a set of fund/GP characteristics. TTR measures the
gross-return due to selling near the market peaks during the fund life-time and buying near the troughs. Table 1 describes the
sample, Appendix C de�nes key variables. The explanatory variables are: ln(FundSize)i (ln(FundSize)2i ) - log (log-squared)
of the fund dollar amount of capital committed; ln(Sequence)i - chronological order of the fund inception date within GP;
ln(PME)i - log of the fund's PME ; ln(TTR)i−1 - log of the previous fund TTR within GP; Industry return over the fund life
time (Trend) and its interaction with the other explanatory variables. Panel A reports regression estimates using actual values
of TTR. Speci�cations (2) through (6) include fund vintage-year �xed e�ects. Standard errors in parentheses are clustered
by GP, */**/*** denote signi�cance at 10/5/1% con�dence level. Panel B reports selected coe�cients from simulations based
on hypothetical exit schedules but actual funds' operation dates and industry return paths. The capital calls and distribution
magnitudes and frequencies are calibrated to match the sample means conditional only on time since a fund inception. The
underlying fund holding period return-generating process (α, σi and β�as indicated by the subpanel header) is speci�ed
relatively to the realized Industry returns at the quarterly frequency. For each combination of the parameters (i.e. Case) of the
parameters we produce 1,000 replications, keeping the seed �xed across cases. Pr{A>S} is the fraction of funds for which actual
TTR exceeds the simulated TTR. IDRfrac is the ratio of (i) the di�erence between the actual TTR and the 10th percentile
of simulated TTRs, and (ii) the interdecile range across the simulated TTRs on fund-by-fund basis. The reported values are
means across replications with standard deviations provided in parentheses.

Panel A: TTRs based on the actual exit schedules

(1) (2) (3) (4) (5) (6)

ln(IndSequence)i 0.060** 0.061*** 0.051** 0.053**
(0.023) (0.021) (0.021) (0.024)

ln(PME)i 0.058*** 0.083*** 0.080***
(0.017) (0.024) (0.025)

ln(TTR)i−1 0.149*** 0.103* 0.093*
(0.050) (0.052) (0.051)

Vintage year �xed e�ects No Yes Yes Yes Yes Yes
(Industry) Trend Yes Yes Yes Yes Yes Yes
Sequence × Trend Yes Yes Yes No No Yes
PME × Trend No No Yes No Yes Yes
Past TTR × Trend No No No Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.049 0.384 0.397 0.440 0.463 0.470

Panel B: TTRs based on random exit: Mean(SD) coe�cient across 1,000 simulations

Case 1: α = 0, σi = 0, β = 1.0

Pr{A>S} = 0.528(0.010), IDRfrac = 0.81(0.08)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.011) (0.011)

Curr. PME 0.016 0.016 0.016
(0.052) (0.052) (0.053)

Past TTR −0.017 −0.018 −0.018
(0.048) (0.048) (0.048)

Case 2: α = 0, σi = 0.20, β = 1.0

Pr{A>S} = 0.531(0.011), IDRfrac = 0.77(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.012) (0.012)

Curr. PME 0.017 0.017 0.017
(0.037) (0.037) (0.037)

Past TTR −0.016 −0.017 −0.017
(0.050) (0.050) (0.050)

Case 3: α = 0.006, σi = 0.20, β = 1.0

Pr{A>S} = 0.533(0.010), IDRfrac = 0.78(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.009 0.009
(0.012) (0.012)

Curr. PME 0.019 0.019 0.019
(0.036) (0.036) (0.037)

Past TTR −0.018 −0.018 −0.019
(0.050) (0.050) (0.050)

Case 4: α = 0.006, σi = 0.20, β = 1.5

Pr{A>S} = 0.518(0.010), IDRfrac = 0.70(0.09)

(2) (3) (4) (5)

Ind. Seq. 0.016 0.016
(0.018) (0.018)

Curr. PME 0.030 0.030 0.030
(0.020) (0.020) (0.020)

Past TTR −0.018 −0.017 −0.019
(0.058) (0.057) (0.057)
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Table A.2

Industry minus Broad market TTRs

This table reports OLS regression estimates for the industry timing track records in excess of that of the broad market. The
dependent variable in each model is a di�erence between the fund TTR computed against the industry benchmark and its
TTR computed against the broad market. Panel A reports results for Entry TTRs, Panel B�Exit TTRs. TTR measures
the gross-return due to selling near the market peaks during the fund life-time and buying near the troughs, which can be
broken down to the entry [exit] components dues to the pattern of capital calls [distributions] as shown in equation 1. Table 1
describes the sample. The explanatory variables are: `Declared Ind.>50%P' � a dummy taking the value of 1 if a single industry
represents more than 50% of the fund investments made during its life-time, `Venture' � a dummy that takes the values of 1
if the fund type is venture, the interaction thereof, and the fund industry and vintage year �xed e�ects. Standard errors in
parentheses are clustered by GP, */**/*** denote signi�cance at 10/5/1% con�dence level.

Panel A: Entry TTRs

(1) (2) (3) (4) (5) (6)

Declared Ind.≥50%oP 0.016* 0.015 0.038** 0.015 0.017* 0.034**
(0.009) (0.010) (0.015) (0.009) (0.010) (0.017)

Venture 0.005 0.024* −0.010 0.005
(0.011) (0.014) (0.011) (0.015)

Venture × Declared Ind.≥50%oP −0.038** −0.028
(0.019) (0.020)

Industry FE Yes Yes Yes Yes Yes Yes
Vintage FE No No No Yes Yes Yes

Observations 941 941 941 941 941 941
R2 0.029 0.029 0.033 0.192 0.193 0.195

Panel B: Exit TTRs

(1) (2) (3) (4) (5) (6)

Declared Ind.≥50%oP 0.004 0.003 0.004 0.017** 0.013 0.016
(0.009) (0.009) (0.009) (0.009) (0.009) (0.012)

Venture 0.009 0.010 0.027*** 0.030**
(0.009) (0.012) (0.009) (0.013)

Venture × Declared Ind.≥50%oP −0.003 −0.005
(0.016) (0.016)

Industry FE Yes Yes Yes Yes Yes Yes
Vintage FE No No No Yes Yes Yes

Observations 939 939 939 939 939 939
R2 0.036 0.037 0.037 0.203 0.209 0.209
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Table A.3

Informed Rush: Robustness to Inference Methods

This table reports standard errors (SEs) computed under di�erent assumptions for the coe�cient on TTR>1 × IRR>Hurdle
× Rush from Table 4, Panel A and B respectively (and the respective speci�cations (1) through (4)). Spatial HAC denotes
standard errors obtained by using the overlap in the return measurement window following the respective SubResTime, following
the method of Conley (1999). Since the returns are 12-month average, the maximal overlap is 4 quarters corresponding to a
weight of 1 in the outer product of residuals and, hence an correlation of 1 between those two exits. This auto-correlation is set
to decay linearly to zero for return intervals that are more than two quarters away from overlapping, e.g. one ends in December
1999 and the other starts in June 2000. Two-way clustered standard errors are obtained as a linear combination of one-way
clustered covariance matrices as shown in Thompson (2011).

Panel A: Informed ≡ (toDateTTR>1)·(toDateIRR>HR)

Fund FE Fund FE+PseudoTiming

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Cluster by Exit quarter (Table 4A) 0.00667 0.00780 0.00464 0.00538

Spatial HAC 0.00670 0.00719 0.00555 0.00447
Cluster by Vintage year 0.00680 0.00663 0.00602 0.00549
Cluster by Industry sector 0.00680 0.00429 0.00293 0.00214

Two-way clustered:

by Exit and Industry 0.00722 0.00560 0.00276 0.00321
by Vintage and Industry 0.00740 0.00467 0.00487 0.00253
by Exit and Vintage 0.00750 0.00823 0.00578 0.00587

Panel B: Informed≡(toDateTTR>1)+(toDateIRR>HR)+(toDateTTR>1)·(toDateIRR>HR)

Fund FE Fund FE+PseudoTiming

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Cluster by Exit quarter (Table 4B) 0.01180 0.01013 0.00959 0.00783

Spatial HAC 0.01021 0.00843 0.00744 0.00656
Cluster by Vintage year 0.01905 0.01654 0.01312 0.01143
Cluster by Industry sector 0.01387 0.01068 0.00628 0.00865

Two-way clustered:

by Exit and Industry 0.01749 0.00867 0.00995 0.00546
by Vintage and Industry 0.01643 0.00734 0.00943 0.00414
by Exit and Vintage 0.01067 0.00911 0.00718 0.00551

Electronic copy available at: https://ssrn.com/abstract=2802640



Table A.4

Informed Rush versus Uninformed: Placebo

This table reports predictive regressions of Industry returns by placebo-substitutes for Informed Rush to provide further support
for the identi�cation scheme deployed in Table 4, Panel A. The empirical model, the dependent variable, and all other controls
as the same as in the respective speci�cation of Table 4. Speci�cations (3)-(4) have predictive covariates added but otherwise
are identical to (1)-(2). Informed funds group is the same as in Table 4 Panel A but Rush and return measurement period
are de�ned di�erently�based on a 4-quarter period with maximal cumulative distributions outside the (-6,+4)-quarter window
around the SubResTime. before15% [after15% ] measures IndReturn after the largest cluster of distributions by each fund but
starting at least six quarters before [for quarter after] the quarter when residual NAVs dropped under 15% of cumulative
distributions, therefore, having arguably far less consequences for the GP's carry interest in the fund. Also, for the purpose
of tests reported in this table, I measure rush magnitude in US dollars but to insure magnitudes and distributional properties
close to those of actual Rush, I de�ne MaxRush as the probit function of log($mln/10). SEs in parentheses are robust to
heteroskedasticity and autocorrelation, */**/*** denote signi�cance at 10/5/1%.

before15% after15% before15% after15%
(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × MaxRush −0.001 −0.001 −0.002 −0.000
(0.005) (0.005) (0.005) (0.005)

toDateTTR>1 × toDateIRR>Hurdle 0.002 −0.001 0.002 −0.003
(0.003) (0.003) (0.003) (0.004)

MaxRush 0.001 −0.001 0.001 0.004
(0.002) (0.004) (0.002) (0.003)

Vintage year �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes

Observations 562 500 556 500
R2 0.001 0.003 0.052 0.287

Table A.5

Calendar Time Portfolios: Quarterly Abnormal Returns

This table reports abnormal return estimates of portfolio B in excess of risk-free rate (rf ) or portfolio A relatively to value-
weighted CRSP or three-factor Fama-French model. Both portfolios are rebalanced quarterly. Portfolio A is equally-weighted 10
GICS sector returns. Portfolio B sells GICS sectors for which two or more Informed funds exhibited above-median Rush at their
SubResTime over the past three or seven quarters (i.e. [0,+2q] or [0,+6q] respectively) and buys the remaining sectors (equally-
weighted). Rush measures the clustering of fund distributions before the SubResTime, when fund residual NAVs become small
in front of fund total-to-date distributions. Informed funds group is the same as in Panel A of Table 4 as of SubResTime.
Median Rush is computed over all funds of the same type (venture or buyout) incepted in the same year. Standard errors in
parentheses are robust to autocorrelation, */**/*** denote signi�cance at 10/5/1% con�dence level.

Formation window [0,+2q] Formation window [0,+6q]

B�rfr B�rfr B�A B�rfr B�rfr B�A

α 0.014*** 0.011*** 0.008*** 0.014*** 0.011** 0.008**
(0.005) (0.003) (0.003) (0.005) (0.004) (0.004)

Mkt minus rfr 0.664*** 0.734*** −0.187*** 0.472*** 0.541*** −0.379***
(0.092) (0.066) (0.054) (0.083) (0.082) (0.073)

SML −0.182*** 0.055 −0.176*** 0.062
(0.045) (0.036) (0.067) (0.052)

HML 0.268*** 0.125* 0.284*** 0.141*
(0.101) (0.067) (0.105) (0.074)

Quarters # 95 95 95 95 95 95
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Table A.6

Informed Rush versus Uninformed: Fuzzy RDD

This table reports predictive regressions of excess Industry returns by Informed Rush, a proxy for the carried interest
�cashed-in� by GPs with a positive track record of market timing in the past:

IndReturn1:12
i − E[IndustryReturn1:12

ij |ci] = α
[
InformedijRushij Informedij Rushij

]
+ βXij + λj + εij ,

where IndustryReturnij is the mean monthly Industry return over 12 months following the fund i SubResTime, the dependent
variable is obtained as a residual of full-sample regressions of IndustryReturnij on ci, return Predictive covariates. Appendix
C provides variable de�nitions. Rushij measures the intensity of fund's distributions to LPs right before SubResTime.
Informedij is the indicator variable denoting funds with both toDateTTR>1 and toDateIRR>Hurdle as of SubResTime
based on 15% residual NAV threshold. Speci�cation (1) includes all funds from the sample (see Table 1 for sample description)
whereas speci�cations (2), (3), and (4) only include funds for which ToDateIRR is, respectively within 7.5%, 5%, and 2.5%
distance from Hurdle rate. All speci�cations also control for the third-order polynomial of ToDateIRR-distance from Hurdle
rate (i.e. the �forcing variable�, Xij) as well as vintage year �xed e�ects (λj). Standard errors in parentheses are clustered at
SubResTime, */**/*** denote signi�cance at 10/5/1%.

Full Distance from Hurdle rate (%)

sample -7.5 to +7.5 -5.0 to +5.0 -2.5 to +2.5
(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush −0.013** −0.015 −0.009 −0.011
(0.006) (0.011) (0.010) (0.016)

toDateTTR>1 × toDateIRR>Hurdle 0.002 0.003 0.003 0.004
(0.002) (0.004) (0.005) (0.008)

Rush 0.005 0.009 0.004 0.007
(0.005) (0.009) (0.009) (0.014)

(toDateIRR minus Hurdle) 3rd-order polynom Yes Yes Yes Yes
Vintage year �xed e�ects Yes Yes Yes Yes

Observations 893 281 186 108
R2 0.046 0.084 0.079 0.128
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Appendix B. Simulation-related Supplement

This section provides the intuition about the simulation-based estimates reported in

section IV.B.2. Additional details and risk-shifting tests are reported in Internet Appendix.

Table B.1

The Model of Fund Fixed E�ects for SubResTime and Rush

This table reports a model of funds' SubResTimeand Rush amounts estimated as Seemingly Unrelated Regressions for all funds
in my sample. The dependent variables are (1) the natural logarithm of number of quarters since the fund's inception when a
threshold of the NAV to total distributions has been crossed from above (has to be a quarter with non-zero distributions to LPs);
(2) a probit function of a fraction of distributions (to LPs) over the last 6 quarters in the funds' total-to-date. The explanatory
variables are same in both linear equations: ln(Size)i�log of the fund $ capital committed; toDatePME�Kaplan-Schoar
PME against Industry; Top-tercle toDateIRR�indicator if the fund IRR is in the top-tercile over the fund-type×vintage-year
peers; Follow-on fund raised � indicator if at least one more fund by the same GPs have started investments two years after
the current fund inception date; Follow-on fund w/n 6 qtrs�indicator if another fund by the same GPs starts investments
within six quarters from the current fund SubResTime; Follow-on fund capital called�fraction of capital called by the last-most
follow-on fund by GPs as a fraction of committed (0 if no follow-on exists); Industry-year �xed e�ects�Industry�by�vintage
�xed e�ects. I include two observations per fund where 15% and 20% thresholds were not crossed simultaneously and the
resulting SubResTime is di�erent. This is the auxiliary model to obtain the �tted values of fund �xed e�ects (with respect
to SubResTime and Rush) and parametrize random exit simulations (via the covariance matrix of SUR residuals). */**/***
denote signi�cance at 10/5/1%.

ln(SubResT ime) Φ−1(Rush)

Coe�cient SE Coe�cient SE

ln(Size) 0.017*** (0.006) −0.092*** (0.023)
toDatePME −0.036*** (0.004) 0.128*** (0.016)
Top-tercle toDateIRR (D) −0.165*** (0.014) −0.151*** (0.052)
Follow-on fund raised (D) −0.056** (0.024) 0.122 (0.086)
Follow-on fund w/n 6 qtrs (D) −0.110*** (0.021) 0.143* (0.075)
Follow-on fund capital called (%) 0.063*** (0.016) −0.054 (0.057)

Industry-year �xed e�ects Yes Yes

R2 0.442 0.132

Observations 1242

Electronic copy available at: https://ssrn.com/abstract=2802640



Figure B1

Robustness

This �gure reports robustness tests for the simulation-based estimates of predictive regressions of Industry returns by Rush
reported in Table 5. Top-left (right) and bottom-left (right) correspond to speci�cations 1 (2) and 3 (4) respectively. In both
panels of the �gure, Case 1 corresponds to the coe�cient estimates on toDateTTRover1×toDateIRRoverHurdle×MaxRush
reported in Panel B of Table 5. The solid black line is the mean coe�cient value across 1,000 independent simulations, while
the area denotes the range of the values. The 95% con�dence interval is based on a mean of asymptotic variance estimates across
the simulations. For Cases 2 through 10, Panel A reports estimates for the same model but the following fund vintage year being
excluded from the estimation: 1993, 1992, 1990, 2001, 1992-93, 1990&2001, 1990&1993&2001, 1990&1992&2001, 1990&1992-
93&2001. While in Panel B, Cases 2 through 10 include all vintages but augment the model with a dummy denoting the actual
fund SubResTime falling in the following years: 2007, 2009, 2000, 2008, 2007&'09, 2000&2008, 2000&2007, 2000&2007&2009,
2000&2007&2008, 2000&2007-09.
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Figure B2

Placebo Tests

This �gure reports placebo tests for the simulation-based estimates of predictive regressions of Industry returns by Rush reported
in Table 5. Left (right)-hand charts correspond to speci�cation 3(4). Panel A plots α estimates and 95% con�dence intervals
over these independent simulations if the actual funds SubResTimeand distributions were replaced by the expected ones from
the fund �xed e�ect model reported in Table B.1. Panel B plots the fraction of placebo exits that have t-statistic lower than
that of the actual funds in each independent simulation as well as the mean value across simulations. Case 1 of the �gure's
Panel C corresponds to the coe�cient estimates on toDateTTRover1×toDateIRRoverHurdle×MaxRush from Panel B of Table
5. Cases 2 though 10 replace the fund's Industry with the another S&P500 GICS subindex so that 10 corresponds to results
against the GICS that is the least correlated with the fund's Industry (based on monthly returns over the �ve-year rolling
window). The solid black line is the mean coe�cient value across 1,000 independent simulations, while the area denotes the
range of the coe�cient across the simulations. The 95% con�dence interval is based on a mean of asymptotic variance estimates
across the simulations.
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Appendix C. Key Variable De�nitions

Variable Name Description

Industry S&P500 Global Industry Classi�cation Sector subindex that the PE fund primarily
specializes in according to Burgiss. Sources: Burgiss, Compustat.

PME Public Market Equivalent of Kaplan and Schoar (2005) with respect to the fund's public
equity benchmark, de�ned as PME =

∑T
t=1 Distribt·ert,T/

∑T
1 CCallst·ert,T where rt,T is

the return on Industry from the cash �ow date until the fund resolution.
Tables 2, A.1; Figures 1. Sources: Burgiss, Compustat.

TTR Timing Track Record is the gross-return due to selling near the market peaks during
the fund life-time and buying near the troughs, de�ned as TTR = PME / PME where
PME =

∑T
t=1 Distribt·er1,T ·(1−t/T )

/
∑T

1 CCallst·er1,T ·(1−t/T ) and r1,T is the return on Indus-
try from the fund inception (unlike from the cash �ow date in the PME de�ned above)
until the fund resolution. See section III.A for details.

Tables 2, A.1; Figures 1, 2. Sources: Burgiss, Compustat.

Entry [Exit ] TTR Timing Track Record with respect to Capital Calls [Distributions] measures the gross-
return due to buying near the troughs only [selling near the market peaks only] following
the decomposition per equation 1. Unlike with TTR, the measurement of the life period
is not from inception to end but from 1st [4th] to 6th [last] year for Entry [Exit ] TTR.

Tables 3; Figures 1. Sources: Burgiss, Compustat.

toDateTTR Same as TTR but excludes cash �ow and return data beyond that Date. Speci�cally,
both PME and PME are computed using the latest NAV available as of the Date
as the terminal cash �ow and rt,T (r1,T ) are measured with T set to the Date (e.g., 5
years since the fund inception, as of the time fund NAVs fall below 15% of cumulative
distributions, etc). Similarly de�ned are toDatePME and toDateIRR.

Figures 1, 2. Sources: Burgiss, Compustat.

SubResTime Time elapsed since the fund inception untill the quarter when the fund NAVs fall below
either 15% or 20% of its cumulative distributions�indicates the calendar quarter when
residual exposure of the fund assets to the market �uctuations becomes relatively low
(and so is the exposure of GPs' personal wealth for the in-the-carry funds).

Tables 4, 5, 6, A.3, A.5, B.1; Figures 4, 3. Sources: Burgiss.

toDateTTR>1 Indicator variable taking a value of 1 if the fund's to-date-TTR in the quarter right
before SubResTime exceeds one.

Tables 4, 5, 6, A.3, A.5; Figures 4, 3, B1, B2. Sources: Burgiss.

toDateIRR>Hurdle Indicator variable taking a value of 1 if the fund's reported IRR in the quarter right
before SubResTime exceeds 8(0)% for buyout(venture) funds.

Tables 4, 5, 6, A.3, A.5; Figures 4, 3, B1, B2. Sources: Burgiss.

Rush Fraction of distributions over 6 quarters before the SubResTime in the fund's total
distributions up to SubResTime.

Tables 4, 5, 6, A.3, A.5, B.1; Figures 4, 3, B1, B2. Sources: Burgiss.

Informed [Rush] The interaction of toDateTTR>1 and toDateIRR>Hurdle indicators [and Rush].

Predictive covariates A set of macroeconomic and �nancial variables that has been used in the literature
(e.g., Welch and Goyal, 2008) to explain variation in risk premia, all measured as of
the respective fund's SubResTime: Industry 's price-earning and book-to-market ratios,
CAY-ratio of Lettau and Ludvigson (2001), CBOE VIX index, U.S. Treasury yields
(10-year and 3-month), corporate credit spreads (BAA-AAA, and AAA-UST), and the
industry 5-year CAR.

Tables 4, 5, 6, A.3, B.1; Figures B1,B2.
Sources: Bloomberg, CRSP, Compustat, FRB, Sydney Ludvigson.
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IA-1. Institutional background

1.1. Private information cycle

In a buyout, a company is acquired using a relatively small portion of equity and a large

portion of outside debt �nancing. In a typical transaction, the fund buys the majority control

of a mature �rm (not necessarily publicly traded). In contrast, venture funds typically invest

in young or emerging companies often through convertible debt or preferred shares, and

usually do not seek to obtain a majority control. In both cases, however, the fund managers

(general partners [GPs]), tend to closely monitor and exert in�uence on the acquired company

activities, normally through active membership on the board of directors (Gompers and

Lerner, 1999; Kaplan and Strömberg, 2009; Metrick and Yasuda, 2010).

The company is one of many investments that the fund's GPs undertake which, in turn, is

a small portion of candidates that get screened during the approximately �ve-year investment

period. Unlike for portfolio investors in public companies, the information set of the fund's

GPs is not be limited by standard disclosure requirements even if the fund have yet to become

a stake holder. On a con�dential basis, GPs are free to request any data about the company

business that the management may possess. GPs tend to specialize in certain industries and

types of businesses. Thus, the signals about the business fundamentals complement each

other across deals.

Both, buyout and venture, would target a total life of about 10 to 13 years from the

investment period start date. The holding durations tend to be 4 to 7 years with some exits

occurring earlier [later] than 2 [10] years after the original investment. For investments that

do not go bankrupt, the exit routes are either IPO or an acquisition. The latter can be further

broken-down by the type of acquirer: (i) another PE fund or a group of investors or (ii) an

operating �rm, possible private too, that is strategically interested in the production capacity

of the target's assets. The IPO route typically fetches the highest return on investment, yet

other exit routes (except bankruptcy) are on average pro�table as well (e.g., see Braun et al.,

2017; Degeorge et al., 2016). As with the timing of divestment, the route is also chosen solely

by GPs. The important contractual feature is that (after withholding their performance fees)

GPs are obligated to pass the divestment proceeds to LPs (rather than reinvest).

Before the investment period concludes, buyout and venture GPs would normally attempt

to raise a new fund. The interval between fund starts would be 2 to 5 years with the average

being 3.5 years for both buyout and venture funds (e.g., Barber and Yasuda, 2017). There

are, of course, numerous reasons for GPs (and LPs) to want the lives of the funds to overlap.

One of the consequences of this practice is a continuous �ow of information about similar

company fundamentals, on the one hand, and investor portfolio demands, on the other.
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These largely non-public information �ows that GPs regularly participate in both, buyout

and venture, can be summarized via the following chart.

Private Equity Information Cycle

1.2. Theoretical predictions

To accommodate the salient features of the institutional settings described above, I will

model the GPs' divestment decisions as the optimal stopping time problem under uncer-

tainty, as studied in Miao and Wang (2011). This framework distinguishes expected utility

maximization with regards to well-measured risk from the situations in which agents are

unsure about the likelihoods of the future state of the world. Furthermore, the set of these

likelihoods is subject to updating itself, which is a natural way to incorporate changes in

the GPs' medium- to long-term outlook changes about the value of their funds' assets they

already run (as well as are yet to raise). In the real-option literature, this is also referred

to as ambiguity about future (a.k.a, Knightian uncertainty in reference to Knight, 1921).

Speci�cally, I will assume that GPs are expected utility maximizers at the horizon of about

one year, and are ambiguity-averse at longer horizons.

Naturally, a GP seeks to maximize the utility of its wealth, which derives from the current

and future (potentially inde�nite) stream of fees. As such, the following Bellman equation

characterizes her wealth process:

Wt(f) = u(ft) + αEq[Wt+1(f)] , (IA-1)

where u(·) is a time-separable utility function; α ∈ (0, 1) is the subjective discount factor for

time lapse; Eq is the conditional expectation operator with the probability measure q ∈ Pt,
a set of the one-step-ahead conditional probabilities given the information at date t (Epstein

and Schneider, 2003); and f = (ft)t≥1 is the fee stream that is observable but stochastic.

For a given period t, say a year, de�ne ft as a sum of fees from funds j run the GP:

ft =
∑

j f
(j)
t · I{j=1; t} , (IA-2)

where f
(j)
t are dollar-measured fees from the fund j = 1, 2, 3, ... run by the GP, and I{j=1; t}

is an indicator for whether fund j has been raised before period t.
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Without loss of generality, assume that a fund can hold only one asset, only exits it in

whole, and the management fees cease after the exit. Accordingly, the fee contribution from

fund j can be written as follows:

f
(j)
t =


0 �if has already resolved before period t

m
(j)
t �management fees if continues beyond t

m
(j)
t + C ·max

{
0, V

(j)
t −C

(j)
t

}
�the payout if exits during t

(IA-3)

, where C is the contractual carry rate; V
(j)
t is the value of the fund assets if sold during

period t; and C
(j)
t is period t's cost basis for the carry computation. Note that normally C

(j)
t

increases in the cumulative management fees paid up to the period t, and a positive hurdle

rate also pushes it further up.

The above de�nition for the fee process underscores that GPs' exit decisions are irre-

versible with respect to the carry claims on fund j's assets. It is therefore subject to the

optimal stopping time toolbox that supports quite general assumptions about the underlying

probability space and the state process (i.e., f in our case), as explained in Dixit et al. (1994)

and Miao and Wang (2011), reproduction of which I omit from this appendix. The GP's

optimal stopping time problem can thus be written as:

max

{ ∫
Wt(f

′)Pt(df ′; f) ,

u
( ∫

f ′tQ(df ′; f)
)

+ α
∫
Wt+1(f

′)Pt(dx′; f)

}
(A): value if stays through t

(B): value if exits in t
(IA-4)

, in which the following notation is obeyed:∫
g(x′)P(dx′;x) = min

q(·;x)∈P(x)

∫
g(x′)q(dx′;x) for any function g(x) . (IA-5)

In words, the GP stands to receive the continuation value, subject to the level of ambiguity

implied by Pt if she decides to stay. Otherwise, she removes the fraction of her wealth deriving

from the current fund's fee stream from being exposed to the most adverse likelihood scenario

(as given by the probability density Pt(f) that results in the in�mum expectation of Wt),

even though it will remain exposed to some residual risk (as given by the density Q(f)),

since V
(j)
t can �uctuate during the period.

As shown in Miao and Wang (2011), a stopping problem like (IA-4) has a unique solution

f ∗, such that whenever ft crosses this threshold from below, the agent prefers payout B

over A, even though the choice does not absolve the risk completely. In our settings, this

corresponds to GPs' choice to exit the current fund and, by doing so, cash-in its carry. The

analysis in Miao and Wang (2011) suggests however, that an analytical solution to the choice

problem (IA-4) is most likely not feasible. Therefore below I seek to merely characterize the

probable changes to GPs' choice under certain relevant scenarios.
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Assume fτ < f ∗ for τ < t, so that GP did not exit the current fund in the previous

periods. First, suppose that the update in Pt from Pt−1 was such that in�mum expected

wealth increased from the previous period.ia1 In this scenario, the prediction about the GP

choice is ambiguous. On the one hand, the value increase in (A) can exceed that of (B). This

can happen because α < 1, and the moneyness of the current fund carry decreases over time

(i.e., due to past management fees and/or hurdle). On the other hand, the density Q(f),

which governs the payout from the current fund (conditional on exit), could have shifted

rightwards enough that the sum of values from (B) choice exceeds that of (A). In other

words, the change in Q(f) could have been more favorable than that in Pt(f).

Suppose instead that the update in Pt from Pt−1 was such that in�mum expected wealth

decreased from the previous period. This corresponds to the GP developing a more negative

medium- to long-term outlook. In this scenario, the decrease in value of (A) will be larger that

that in (B), so long as the current fund is in the carry�i.e.,
∫
f ′tQ(df ′; f) >

∑
jm

(j)
t I{j=1; t}.

This is so because the change in Q(f) cannot be more adverse than that of Pt(f), which

returns the in�mum by construction. Meanwhile, if the (immediately expected) carry is zero,

the GP stands nothing to gain from exiting during period t since collecting the management

fee from the current funds involves no risk even under Pt(f).ia2

The diagram in section IV.A.1 of the main text summarizes these scenario analysis.

1.3. Which PE exits are informative?

IPO versus non-IPO

Consider a hypothetical seven-year old buyout fund that has yet to liquidate most of its

investments. Suppose the GP anticipates that the industry-wide cash �ows will be notably

below market expectations in the near term but healthy in the long run. Assume there is

another fund approaching the end of its investment period that has yet to deploy its capital.

GPs of the second fund may agree to buy the holdings of the �rst at prices close to publicly

traded comparables. They may in fact do so while fully sharing the belief about an upcoming

downturn and yet still be taking the �rst-best action from their LPs' perspective.ia3 Hence,

the exits by the �rst fund would be informative of industry return expectations even absent

an IPO. Likewise, corporate buyers may have investment horizons di�erent from that of the

seller. Thus, exits through trade-sale can be as informative about GPs' expectations as sales

through an IPO.

ia1 That is,
∫
W (f ′)Pt(df

′; f) >
∫
W (f ′)Pt−1(df ′; f)

ia2 This conclusion assumes that the exit decision per se does not e�ect the fundraising success probability
however, as embedded in Pt(f).
ia3 Just the wealth transfer from outside creditors who overestimate the collateral value may exceed the

second fund overpayment. The portfolio company improvement may yet to be fully realized by the �rst fund.
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Finite life considerations

Continue with the example fund that is beyond the phase when new or considerable

follow-on investments are permitted. Assume that it has performed well enough for GPs to

have a substantial performance fee to harvest in that fund. If the fund investment value

deteriorates at the end of the fund contractual term (e.g., 10-12 years), the carried interest

may vanish as well. By rushing to sell the fund holdings, not only do GPs secure performance

fees, but they also lock-in a relatively high performance rank among peer funds, which can

help attract investors in future funds.

In contrast, there are few bene�ts to GPs from premature divestments before the industry

downturn if the performance to-date has been poor. Asset liquidation would amount to

suboptimal early-exercise of an option (to earn carry and improve performance rank) and

reduce asset management fees.ia4 Therefore, it is possible that skilled GPs facing such a

survival risk would likely seek to retain fund assets ahead of the turbulent times for the

same reason that option-holders want the underlying asset volatility to increase. However,

since such an asset-hoarding may tarnish GPs' reputation with investors and adversely a�ect

future fundraising, one would expect it to be limited to GPs that face immediate survival

risk only (i.e., were unable to raise a follow-on fund).

It is important to note that, because hedge fund (as well as mutual fund) managers

typically operate open-end funds, it is costlier for them to keep low exposure to the market

in the anticipation of the downturn over the next several quarters than for PE GPs. Lack

of competitive returns reported for several quarters (while the market run continues) can

result in capital out�ow due to redemptions from dissatis�ed fund investors precisely when

the manager would want to maximize capital deployment ahead of the market rebound.

The �nite life feature of PE funds is critical for the formation of incentives to reveal

the timing signal through exits. A manager endowed with an in�nite-life investment vehicle

might rather view the expected downturn as an opportunity to acquire desired long-term

exposures at attractive prices.ia5

When do PE exits convey less information?

Suppose that our hypothetical fund has performed very well but already divested its

best deals (i.e., those yielding the highest performance fees). The remaining holdings in the

fund's portfolio would then likely comprise the deals that failed to payout well. Provided

that the fraction of this residual in the total distributions to-date is small, its option value

ia4 Some funds have the basis for asset management fees switching from committed to invested capital after
the investment period elapses.
ia5 �You'd be making a terrible mistake if your stay out of a game you think is going to be very good over

time because you think you can pick a better time to enter...� (Warrent Bu�et, CNBC 2/27/17)
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(which increases in the assets' idiosyncratic risk as well) may still dominate any expected

loss of value to the fund's carry amount due to the likely deterioration in the industry-wide

factors.

Thus, as the value of the residual fund assets reduces in front of the amount of carry

already cashed-in, the incentive for GPs to reveal a negative market-timing signal diminishes.

Meanwhile, a low pace of distributions over the remainder of the fund's life is also consistent

with a scenario when GPs have been expecting improvements in the comparable valuations

during that period (i.e., may contain a positive market-timing signal). As industry-wide

returns improve (yet remain small in front of the assets' idiosyncratic returns), the exit

choice will be increasingly driven by positive realizations of the idiosyncratic risks, which, by

de�nition, are uncorrelated across assets. Hence, the remaining exits would be less clustered

in time, all else being equal. Equivalently, there will be fewer distributions per unit of time.

Similarly, the divestments undertaken earlier in the fund's life, while the residual exposure

of GP's carried interest has remained high (or very little carry accrued yet), should contain

relatively less of the market-timing consideration.

Potential power drains

GPs might be too diversi�ed or could hedge their undesired exposures elsewhere. How-

ever, �nance professionals are often legally prohibited to undertake any personal investing

activities potentially jeopardizing best actions in the interests of clients or their employers.

There is little systematic evidence on how strong and common such clauses are but GP risk-

aversion combined with basis risk could also limit these hedging activities. It is also likely

that I measure skill and incentives with error (e.g., see subsection below). If anything, these

should prevent me from �nding signi�cant predictability in my primary tests.

1.4. Net IRR as proxy for In-The-Money carry

In my data, I do not observe the amount of carry interest that GPs have `at risk' to

losing due to the dip in the market valuations. Instead, I use net of fees cash �ows to infer

whether the carry amount has been greater than zero at the time when fund is close to fully

resolved. This approach results in a measurement error for the case when fund terms allow

GPs to receive carry distribution before distribution to LPs exceeded the capital called by

the fund.ia6 The measurement error will be in the direction of underestimation of carry paid,

especially when carry is determined on a deal-by-deal basis.

However, because the key coe�cient of interest is on the interaction of the in-the-money

carry proxy and the fraction of recent distributions to the total-to-date (i.e. Rush), the

ia6 In the latter case, IRR less or equal [greater] to the Hurdle rate guarantees zero [positive] carry cash-in
by GPs, since Hurdle rate is used to grow the net capital invested.
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measurement error gets mitigated markedly�even for the deal-by-deal basis, high values

of Rush insure that the proportional amount of carry has been harvested right before the

hypothesized dip in the public benchmark is measured. Nonetheless, it is likely what causes

the lack of power in the fuzzy RDD tests (reported in Table A.6 of the main text) in which

I compare funds with net IRR just above the Hurdle rate to those with net IRR just below.

IA-2. Simulation-based estimator

2.1. Setup

In this section I provide additional details about the simulations-based method used to

obtain results reported in section IV.B of the main text, as well as section IA-3.3.3 of this

appendix.

The method involves three steps. First, I estimate an auxiliary model of expected Sub-

ResTime�time to quarter when fund NAVs dropped below 15% or 20% of total-distributions

to date�and Rush�the fraction of distributions over the past 6 quarters relatively to the

funds total to-date�for all funds in the sample as functions of: (i) vintage-by-industry �xed

e�ects; (ii) fund size, PME-to-date, IRR-rank-to-date; (iii) GPs follow-on fund start dates

and investments activity where available.ia7 It is insightful to think about this auxiliary model

as simply a density-mass �lter for possible SubResTime�Rush combinations. To insure that

simulated values have economically meaningful support, I take log of the stopping-time and

probit of Rush. I treat the equation for ln(SubResT ime) and the equation for Φ−1(Rush) as

two linear Seemingly Unrelated Regressions as per Zellner (1962) but the �nal results are es-

sentially unchanged if I allow simultaneity in SubResT ime and Rush and use IV-estimates of

the expected values (unreported, available upon request).ia8 I utilize the pseudo-panel struc-

ture of Rush and SubResTime observations per fund where the pattern of fund distribution

permits so.ia9

Table B.I of Appendix B in the main text reports the results of this estimation. For

both equations Vintage-by-Industry FE provide the biggest portion of explained variation.

Nonetheless, all other variables signi�cantly explain ln(SubResT ime) and have signs consis-

ia7 The sample industry-vintage universe is rather sparse before 1990 (relatively few funds to begin with) and
post 2003 (as relatively few funds reach the stopping-time threshold). Whenever the industry-vintage bucket
includes fewer than nine funds, I (i) consolidate �Energy� and �Materials� into �Industrials�, �Consumer
Staples� into �Consumer Discretionary� and (if still fewer than nine funds) (ii) consolidate vintages into
triennial groups to allow for better estimations precision.
ia8Note that under the null hypothesis, SubResTime and Rush do not predict public equity returns, and

thus possible simultaneity and variable omissions are not a�ecting the validity of inference in main model

(described below).
ia9 Namely, when a fund reaches 15% and 20% threshold of residual NAV to total distributions-to-date in

di�erent quarters.
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tent with the economic intuition. Speci�cally, fund log-size is positively related to how long

it takes to resolve it, while superior performance, as measured by PME and IRR-tercile, as-

sociates with shorter durations. Unsurprisingly, the duration of existing funds also correlates

with the fundraising success by GPs, as the loadings on Follow-on Raised - and Follow-on

within six quarters-dummies suggest, while positive loading on the fraction of capital called

by the next fund may speak about the GPs' economic optimism (or asset-hoarding). The

same set of covariates has less success in explaining Φ−1(Rush) with R2 being only 0.132.ia10

Fewer explanatory variables are signi�cant statistically, although the signs of all coe�cients

are economically intuitive still. The �tted values from these equations represent the projec-

tions of fund �xed e�ects on the set of above described covariates. I will use these projections

in place of cohort �xed e�ects in estimating the main model (described below). The better

the �t, the smaller the covariance matrix of stopping-times and Rush residuals that I will

use to parametrize the simulations. Therefore, I do not include fund type indicators among

other covariates that add more noise than explanatory power. Besides the �tted values, I

also obtain the covariance matrix of the residuals for both equations.

Second, I randomly draw a sample of 100 bivariate normal shocks from a covariance

matrix that is itself randomly drawn from Wishart distribution parametrized by the the

covariance matrix of residuals estimated in the �rst step. In doing so, I allow for uncertainty

about the auxiliary model estimates and admit heteroskedasticity in the return-predicting

equation discussed in the third step. Adding same set of shocks to fund-threshold estimates

of expected ln(SubResT ime) and Φ−1(Rush) and reverting the functional transformations,

obtains the simulated values of stopping-time and Rush for each fund-threshold in the sam-

ple that re�ect (a) Industry-GPs-fund characteristics, (b) sample covariance of unpredicted

portion of stopping-time and Rush, and (c) random shocks drawn from a random mixture of

normal distributions. Although consistency of the third step will not depend on whether the

distribution of actual SubResT ime and Rush are close to the simulated ones, it is useful to

examine this question as it may a�ect inference. Figure IA-1 reports comparisons of univari-

ate distributions and bivariate relations of actual SubResT ime and Rush (Actual Funds) in

comparison to those of simulated funds for random draw. It appears that simulated bivariate

distributions tend to have more weight in tails which, if anything, is likely to upward-bias

the parameter variance estimates.

Applying the actual fund inception dates, for each fund-threshold-placebo exit I obtain

the months corresponding to the actual and simulated SubResT ime and match the 12-

month forward mean Industry return as well as the respective month and industry-month

ia10 This is consistent with the �ndings in Robinson and Sensoy (2016) that fund age and calendar time
(quarterly) �xed e�ects explain less than 8% of the aggregate PE cash-�ow variation.
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covariates that control for Pseudo-timing alternative. These variables are CAY-ratio, VIX,

U.S. Treasury yields, corporate credit spreads, the industry index price-earnings and book-

to-market ratios. See section II and Table I and II in the main text for details and summary

statistics. The data end in October 2013, with the last actual fund stopping-month being

March 2013. If the stopping-month is later than June 2014, this placebo exit is truncated

so that the forward mean return is computed over at least 6 months. Hence, some of the

funds post 2004 vintage will tend to have slightly fewer than 100 placebo exits. The results

are robust to dropping these funds (available upon request).

Third, I compare how subsequent Industry Returns associate with Rush of actual funds of

interest (denoted by Informed -dummy) as opposed to that in simulated exits corresponding

to these funds (main model):

E[IndustryReturn1:12
ij ] = αInformedijRushij + α0Informedij + α1Rushij + λj.

The panel subscript j denotes a given actual fund (Informedij = 1) and its simulated

exits(Informedij = 0) corresponding to this fund. I then study di�erent groups of actual

funds, subsetting the control group accordingly each time (rather than re-simulating it).

To insure that α estimates are robust to the simulation starting point (seed value) and

yet to keep the procedure computationally attractive, I repeat the second and third steps

1,000 times. Each time I randomly choose simulation seeds for shocks and the covariance

matrix draws which also alleviates the autocorrelation problem in pseudo-random number

generators. Hence, I obtain independent estimates of main model from 1,000 samples of

identical data for actual funds augmented with di�erent simulated pseudo exits (henceforth

independent simulation).

2.2. Statistical properties

My three-step estimation is quivalent to the following just-identi�ed Simulated Method

of Moments :

E
[
Z1j

(
SubResT imej − f(GP-fund characteristics; θt)

)]
= 0

E
[
Z2j

(
Rushj − g(GP-fund characteristics; θr)

)]
= 0

E
[
Z3ji

(
IndRet(θt,r,Σ)−αααInformedRush(θt,r,Σ) + α0Informed+ α1Rush(θt,r,Σ) + FFE(j)

)]
= 0

E

[(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)
⊥ FFE(j)

]
= 0

E

[(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)(
SubResT ime(θt,r,Σ)ji

Rush(θt,r,Σ)ji

)′
⊥ FFE(j)−W2(Σ, 1)

]
= 0

where the �rst two restrictions use only the sample data while the remainder involve simu-

lated data and:
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(i) Z1j, Z2j and Z3ji denoting the sets of all covariates in the respective moment restriction;

(ii) FFE is a set of dummies denoting expected stopping month and Rush for each actual

fund j as per functions f(...) and g(...) evaluated at the parameters' values θt and θr respec-

tively;

(iii) W2(Σ, 1) � a draw from Wishart distribution with 1 degree of freedom, parametrized by

2x2 positive de�nite Σ, the covariance matrix of the sample fund residuals:
(
SubResT imej−

Ej[SubResT ime]
)
and

(
Rushj − Ej)[Rush]

)
;

(vi) SubResT ime(θt,r,Σ), Rush(θt,r,Σ) � simulated values of SubResTimeand Rush under

the parameters θt, θr and Σ;

(v) IndRet(θt,r,Σ) � mean Industry Return over 12 quarters following the month according

to SubResT ime(θt,r,Σ) and fund j inception month.

Although consistency of moment-based estimations does not depend on distributional

assumptions (provided the moment restrictions are valid), drawing shocks to SubResTime

and Rush from a randomly drawn covariance matrix is important for correct inference in

such situations. One way to think of this procedure is that it allows for error-term het-

eroskedasticity and clustering in main model, which is almost surely true in the population

of funds. Another motivation for these simulation parameter perturbations is that they al-

low for uncertainty in the covariance matrix estimates (Σ). Again, absence thereof would be

an unrealistically strong assumption. Similar intuition underlie imputations via the Gibbs

sampler and some Bayesian inference methods (Efron and Tibshirani, 1994).

The point estimates [con�dence intervals] for α that I report in Tables V and VI and in

Figures B1 and B2 in the main text are based on equally weighted means of αs [ ˆavar(α)s]

over 1,000 independent simulation.ia11 In essence, I run Fama and MacBeth (1973) procedure

which is asymptotically equivalent and typically as e�cient as panel least-squares methods

(Skoulakis, 2008). While the aggregation of point estimates is standard, my choice for

the variance re�ects the fact that α-estimates across our independent simulation must be

perfectly correlated asymptotically.ia12,ia13

Besides α and the asymptotic variance-based con�dence interval, Figure B1 in the main

text plots the range for αs across independent simulations. This range indicates how sensitive

the estimates are to the seed value choice when we draw at most 100 random exits for

each fund. In both Panels, A and B, top-left(right) charts report results for the baseline

model with stopping-time de�ned as crossing 15 (20)% threshold of NAV/(total distributions

ia11 Each avar(α)s estimate is robust to error clustering at exit quarter.
ia12 A GLS version of Ferson and Harvey (1999) yields almost identical point estimates in the cases I
reviewed (untabulated).
ia13 This variance estimator can also be viewed as obtained through a parametric bootstrap, e.g. see Efron
and Tibshirani (1994).
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to-date), while bottom-left (right)�for the baseline model augmented with Pseudo-timing

controls and 15 (20)% threshold. Panel A investigates how robust the estimates are to

exclusion of selected vintage years. Panel B�dummies-out selected exit years.

To examine the consequences of the parameter-dependence of the null hypothesis in main

model, Panel A of Figure B2 in the main text plots α estimates over independent simulations

when actual fund stopping month and Rush are replaced with their expectations estimated

in the �rst step. These expected values indicate the location of the density masses for the

simulated funds. Clearly, they are always zero statistically and, if anything, tend to be

slightly negative. As with expected stopping month and Rush, I can compute coe�cient and

variance estimates for each one of the 100 bivariate draws. Panel B plots the fraction of

simulated funds that have t-statistic lower than that of the actual funds by each independent

simulation. We can see that these random rejection rates are consistent with (two-sided) 5%

con�dence level for the 15% threshold case as per asymptotic variance estimates in Table V

of the main text, but somewhat higher for the 20% threshold case where, in which with

asymptotic variance estimate we reject the null at 10% level.

2.3. Alternative approaches

Another viable econometric strategy to compare market returns following actual fund

exits and rush from those under a random exit assumption would borrow tools from the sur-

vival analysis. In fact, a discrete time hazard-rate model would imply a very similar dataset

(spanning the plausible range of stopping-times for each fund) to the one I use to estimate

the main model but the observation weights would be governed by a parametric distribu-

tion (e.g. logistic) instead of a mixture of normals that my simulations imply, although the

interpretation of coe�cients would be less intuitive.ia14

However, neither is such a discrete hazard-rate model more robust to functional form

misspeci�cation or variables omissions, nor is it less restrictive as it comes to the parameter

variance estimation. Moreover, non-linear MLEs are prone to the incidental parameter

problem with large set of �xed e�ects (Wooldridge, 2002). Finally, bypassing an auxiliary

model of my approach would not be possible with a hazard-rate model still because the

values of hypothetical Rush are not known. Essentially, for each quarter we observe a rolling

window sum of distributions to the total sum of distributions to-date, conditional the actual

�stopping quarter�. What we need to observe is that amount conditional on �stopping� in

that particular quarter.

ia14 The dummy Informed and mean Industry Return would have to switch sides since the dependent variable
needs to be binary.
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Figure IA-1

Actual fund exits versus simulated

This �gure reports comparisons of SubResTime (labeled as 'E�ective Life (Qtrs)' on the chart) and Rush

('Rush-to-Exit (Pct)') for actual funds in comparison to a random draw of simulated funds. See section IA-
2.2.1 for details. Panel A reports kernel density estimates of SubResTime and Rush with solid (dashed) line
being a separate estimate over the actual (simulated) values on the left- and right-hand charts respectively.
Panel B plots local polynomial regressions estimates of SubResTime and Rush relations for actual and
simulated values on the left- and right-hand charts respectively.

Panel A: Univariate Distributions

Panel B: Bivariate Relations
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IA-3. Additional results and robustness

Figure IA-2 reports cash �ow schedules against the time series of public benchmark for

hypothetical funds and reports the corresponding values of Timing Track Records (TTRs)

which are de�ned as:
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception,

rt+1:T is continuously compounded return on public benchmark between date t and the

fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t.

Figure IA-3 describes the fund sample distributions across vintage years and the annu-

alized returns cross-sectional variation in the industry sector returns that correspond to the

fund specialization.

Figure IA-4 depicts cross sectional variation in capital calls and distributions over time

separately for buyout and venture funds. It follows from Panel A that, for example by the

30th month since inception, a quarter of buyout funds would call 61% of its capital or less

while another quarter would be fully invested by that time. Meanwhile, from the right-hand

charts we learn that among almost fully resolved buyout funds, a quarter had about 40%

of total distributions completed 30 months before last while another quarter had over 80%

already distributed. Panel B shows that the dispersion is similarly wide for venture funds.

Figure IA-5 compares the sample fund distribution of TTRs computed against the broad

market returns measured by CRSP VW index (Panel A) with those computed against the

returns of S&P500 subindex corresponding to the GICS Industry sector focus (fund Industry)

as assigned by Burgiss, the PE fund data provider. It follows that the means and variances

are notably higher against the Industry returns for both venture and buyout funds.

Figure IA-6 reports additional event studies for Informed Rush (by exit year group, to

complement those in Figure 3 in the main text) and for Informed �No Rush� (i.e. Rush<

vintage median). It appears that when Informed and incentivized GPs procrastinate with

trimming remaining exposures as manifested by low values of Rush the industry share price

performance tends to improve. However, the returns do not become abnormally good as if

there were some short-lived distortions in the valuations caused by the `copycat' behavior of

some investors taking long positions in the industry. Rather, the returns become very close

to these around the control group exits, which, in turn, appear unchanged from before the

SubResTime.

3.1. Robustness tests

Table IA-1 reports results of a multivariate analysis of the sample fund TTR properties.

Panel A repeats the corresponding table from the main text, whereas Panel B runs same tests

but using TTRs and sequencing against the fund Industry. It follows that the persistence

and correlation with PME is weaker for the case with broad market index.
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Table IA-2 reports predictive regressions of return by Informed Rush just as those in

Table IV of the main text but using a dummy variable to denote Rush which is a fraction

of distributions (to LPs) over the last 6 quarters in the funds' total-to-date. Speci�cally,

Rush20 = 1 if Rush >= 0.2. Industry returns are of S&P500 subindex corresponding to the

GICS industry sector of the fund specialty. From this analysis, it follows that results are

very similar to those reported in the main text using continuous Rush and are not driven

by a non-representative minority of funds�(toDateTTR>1 × toDateIRR>Hurdle × Rush20)

=1 for 205 funds which is 22% of the sample.

Table IA-3 additionally scrutinizes the potential for simultaneity between Rush and In-

formed indicator to drive the predictability of returns in the main tests. In this analysis, I

instrument both, IndustryReturn the Informed indicator. I continue using IndEPSsurprise as

the source of variation for IndustryReturn and use a propensity score to instrument Informed

indicator. The propensity score is determined by the performance of the current fund's peers

and the timing track record of the previous fund managed by the that GP. Therefore, the

remaining variation in Informed indicator (and that of Informed×IndustryReturn) is less

susceptible to the Grandstanding and Footprint-on-Firms concerns. More speci�cally, the

exclusion restrictions for the validity of this test are: (i) industry future earning surprises

do not a�ect the fund exits today except through GP's industry return outlook, and (ii)

strategy-by-vintage median �luck� does not a�ect the fund exits today except through the

odds that the fund carry is in-the-money. This analysis is reported in Table IA-3. It reveals

the negative and signi�cant interaction on Informed×IndustryReturn and, thus, supports

the hypothesis that future industry returns cause Informed Rush.

3.2. Does Rush hurt holding period returns?

If holding period returns were sacri�ced, we would expect that the gains from company

selection and nurturing (as measured by holding period returns) to be negatively correlated

with those from buying (selling) near the industry troughs (peaks). Although the results

in Table IA-1 suggest that this correlation seems to be positive, they are prone to spurious

correlation due to fund risk misspeci�cation (see section II.A of the main text) and the overlap

in lives across several funds (Korteweg and Sorensen, 2017). Moreover, it is interesting to

examine holding period returns of funds in which GPs might have refrained from divesting

ahead of the market downturns. If their decisions �to not rush� were driven by the objective

to maximize the total return for LPs, we should expect that the average holding period

abnormal returns of their funds to be higher (so that those decisions could have been optimal

still).

Utilizing funds' holding period abnormal performance as dependant variable in a model
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used to predict industry returns in the main text (Table IV) and Table IA-2 of this appendix

yields the required tests. Table IA-4 reports the results. As before, Informed group is

represented by its constituents, to-date TTR > 1 and IRR > Hurdle and the interaction

thereof, whereas Rush is a ratio of the fund distributions over 6 quarters to the fund's total

to-date. To zoom at GPs' portfolio company selection and nurturing e�ects, I add industry

�xed e�ects to vintage year �xed e�ects while there is no purpose to condition on the risk-

premia covariates as of the stopping time in this case (dropping industry �xed e�ects leaves

the estimates largely unchanged).

The di�erences across speci�cations in Table IA-4 derive from the dependent variable

only. In speci�cations (1) and (2), it is Kaplan-Schoar PME at the latest available date

(henceforth, Last PME ) against the fund industry and the broad market, respectively. While

the funds that had neither performance in excess of the hurdle rate nor a good timing

track record (TTR > 1), indeed appear to attain lower lifetime PMEs when their exits

cluster signi�cantly towards the last few quarters of active operations (i.e., Rush ≈ 1), all

the interaction terms with Rush are positive. The cumulative e�ect on PME for Informed

Rush (reported in the bottom of the table) is actually positive, although not signi�cant

statistically. Thus, I conclude that there is no evidence of holding period returns' sacri�ce

by GPs exhibiting Informed Rush.

The signi�cantly negative coe�cient on TTR > 1 indicates that the �non-Rushing� In-

formed GPs who were not making any performance fees, have had signi�cantly lower holding

period returns for their investors than the control funds. This would be expected if those

GPs were primarily concerned with keeping their option to earn performance fees alive (at

the cost of LPs' value maximization objective).ia15

In speci�cations (3) and (4), I focus on holding period returns speci�cally during the

periods of exits (i.e., while Rush is measured). Therefore, I de�ne the dependent variables

as a log of a ratio of last PME (industry and broad market, respectively) to the PME as of

the fund's �fth anniversary. The main-e�ect coe�cient is no longer even negative while the

interactions with just TTR> 1 and just IRR>Hurdle are much closer to zero, suggesting

that Rush relates to returns attained earlier during the funds' lives (motivating the inclusion

of PME-to-date in the conditioning set for the simulation-based estimations, see section IA-

2). The key result�the positive cumulative e�ect of Informed Rush�remains qualitatively

unchanged from speci�cations (1) and (2), showing no evidence of holding period performance

cannibalization from market timing of exits by Informed. However, the positive association

ia15 In the untabulated analysis, I also verify that funds run by informed GPs that appear to rush have
signi�cantly shorter life than the control group, whereas when Rush is near zero, the life is longer, albeit
insigni�cantly.
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between Rush with holding period returns appears stronger economically and statistically

during the later periods of fund lives when most divestments occur.

3.3. Evidence on risk shifting

In this section, I test whether GP skills can also hurt LP interests through more successful

�asset-hoarding� ahead of high volatility periods.ia16 While LPs can also bene�t from the

option value of a distressed equity claim, it appears unlikely that such risk shifting by GPs

implements a �rst-best portfolio choice from their LP perspective. Instead of keeping the

assets in the fund, most LPs could obtain equivalent systematic and comparable idiosyncratic

volatility exposures while not footing the bill for the GP's call-option. To proceed with the

tests, I simply change the dependent variable in the baseline model used in the main text (i.e.

Table V) from future mean of Industry returns to past volatility, and rede�ne the Informed

funds group.

I estimate volatility as annualized standard deviation of monthly returns -6 to 0 and -12

to -8 quarters relative to the respective fund's stopping-time. The �rst window corresponds

to the period over which Rush is measured. Hence, it shall speak about how the fund

distributions' clustering associates with abnormal industry volatility. The second window is

even more interesting since high values of Rush imply that there were very few distributions

made before the Rush measurement window while the fund �xed e�ect projections ensure

that the volatility is abnormal relative to the fund inception date×industry and other fund-

and �rm-level covariates (as per the auxiliary model in Table B.1 in the main text). The

results for the �rst window can be considered a placebo experiment that informs about

the di�erences in abnormal volatility within Informed Rush period, which (if present) may

confound our interpretation of the results for the {-12 to -8}-window .

The informed group now comprises funds that (a) have a positive track record of market

timing (TTR>1 ), and/or (b) where GPs face a survival risk beyond the term of the current

fund. I assume the survival risk to be determined by a combination of the following two

conditions: (i) whether net-of-fees IRR was in the bottom or top tercile among type×vintage
peers (Btm/Top), and (ii) whether a successor fund has been raised (NoNext/YesNext).ia17

To not engage more than three-level interaction terms, I de�ne three non-overlapping groups:

Btm|NoNext, Btm|YesNext, and Top|NoNext. In addition, to preclude a look-ahead bias and

unrealistic assumptions, I measure TTR and IRR as of the �fth anniversary of the respective

ia16 Similar to management seeking to increase the riskiness of company assets when incentivized by dis-
tressed equity as per Jensen and Meckling (1976), and Galai and Masulis (1976), among others.
ia17 Clearly, an existence of a follow-on fund commitment from investors keeps the GPs �in-business� for the
next decade while the current fund performance is a signi�cant determinant of the fundraising odds as per
Barber and Yasuda (2017).

IA-17

Electronic copy available at: https://ssrn.com/abstract=2802640



fund and constrain the sample to funds with actual stopping-times at least eight years from

inception. This ensures that the funds are not too young to make any distributions during

the {-12 to -8}-window, while the to-date performance signals are meaningful and yet not

overlapping with the volatility observation windows.

Arguably, Btm|NoNext-funds face the highest incentive to hoard the fund assets since

their GPs likely have no performance fees to collect from the current and future funds. The

trade-o� is less clear for Btm|YesNext-funds' GPs. On the one hand, the asset-hoarding

bene�ts the value of their out-of-the-money option to earn performance fees in the current

fund. On the other hand, such a behavior may tarnish their relationships with investors and

negatively a�ect the odds of successful fundraising in the future. Chung et al. (2012) show

that the present value of expected fees (performance-based and �xed) from the future funds

(yet to be raised) may exceed those from the current fund. Meanwhile, the examination of

the e�ects for Top|NoNext-funds completes the analysis by highlighting the role of current

performance with respect to the risk-shifting incentives. There should be zero e�ects insofar

performance fees in the current fund reduce GPs risk-appetite and/or high performance

signi�cantly increases the odds of fundraising success (Barber and Yasuda, 2017).

Table IA-5 reports the results for the stopping time de�ned based on 15% NAV/�total

distributions to-date� threshold. All speci�cations include the projections of fund �xed e�ect

(see Appendix B in the main text) and the main terms of Rush and Informed. Speci�cations

(3) and (4) also include the levels of VIX index as the fund stopping-quarter and the -12 to

-8 quarters or -6 to 0 quarters, respectively, to better absorb heterogeneity across informed

funds and zoom at the industry-speci�c innovations to the volatility. Speci�cations (1) and

(3) show that the volatility during the Rush periods is neither abnormal (relative to the

hypothetical exits) nor meaningfully di�erent within Informed funds across the incentive

and skill dimensions. Therefore, the results for {-12 to -8} window shall provide us with a

clean test of risk shifting hypothesis.

Meanwhile, speci�cations (2) and (4) of Table IA-5 strongly support the hoarding hy-

pothesis. While the industry volatility associations with the divestment schedules continue

to be insigni�cant for funds that appear to have just timing skill but no incentive to risk-shift

(and vice versa), there is a singi�cant di�erence when both conditions are satis�ed. A posi-

tive and signi�cant coe�cient of TTR>1 × Btm|NoNext × Rush in speci�cation (2) suggests

that an inter-quartile (=0.3) increase in Rush by such funds associates with approximately

2.5 percentage points higher per annum volatility of the industry returns during the quarters

preceding the Rush. Since the fraction of distributions prior to the sixth quarter before the

stopping equals 1-Rush, it follows that these funds had distributed abnormally small frac-

tion of fund assets before the industry volatility became abnormally high. Controlling for
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the systematic volatility levels within the window and at the fund resolution date (as per

speci�cation (4)) does not change the result.

The projections of fund �xed e�ects re�ect funds' inception dates. Therefore, the fund-

speci�c control-groups of hypothetical exits account for di�erences in the volatility paths

since fund inception (e.g., as of the �fth anniversary). Besides, negative but insigni�cant

from zero coe�cients of TTR>1 × Top|NoNext × Rush speak against the e�ects on TTR>1 ×
Btm|NoNext × Rush being driven by other factors (e.g., when many funds had no successor

by mid-life). Thus, we can conclude that Informed GPs who have incentives to �hoard�

fund assets are signi�cantly more likely to �drag� their fund assets through periods of high

turbulence in the industry.

Finally, the e�ectively zero coe�cients on TTR>1 × Yes|NoNext-terms indicate that,

skilled timers or not, poorly performing GPs that nonetheless have a successor fund already

do not exhibit such risk shifting behaviors. This suggests that expected �ows from future

funds do restrain managers from �destroying value�, consistent with the analysis in Chung

et al. (2012).
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Figure IA-2

Timing track records: examples

This �gure plots pair-wise comparisons of TTRs for eight hypothetical fund capital calls (CCallst) and
distribution (Distribt) schedules (#1�#8) and a common (mean-zero) market return (rt) schedule. The cash-
�ow schedules are from the LPs' perspective so that the negative values represent capital calls that sum to
$50 for all but fund #2. All are derived from the following value process�FundV aluet = FundV aluet−1(1+
rm,t)+CCallst−Distribt. As discussed in the main text, in this case the fund money-multiple equals TTR.
TTR measures the gross-return due to selling near the market peaks during the fund life-time and buying

near the troughs and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception,

rt+1:T is continuously compounded return on public benchmark between date t and the fund's resolution,
while Dt[Ct] is the fund's distribution [capital call] at end of period t. Top-left panel demonstrates that
very di�erent schedules can be equally market-timing neutral. Top-right panel reviews the case of buying
at trough. Bottom-left panel demonstrates the e�ect of selling at peak whereas bottom-right panel shows
timing of entry and exit.
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Figure IA-3

Sample description

This �gure reports intertemporal distributions of Industry returns in Panel A and the sample private equity
funds in Panel B. Each observation in the box-plot of Panel A represents a 12-month return of S&P500 GICS
industry sector subindex. The increment between intervals is one month so that there are 12 observations
for each of the 10 industry sectors. Panel B plots total number of funds in the sample by vintage-year as well
as the number of funds with a positive track record of market timing in the past, as measured by TTR � the
gross-return due to selling near the Industry peaks during the fund life-time and buying near the troughs
(see �gure IA-2 for deni�tion). The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.

Panel A: Industry returns

Panel B: Funds by vintage and TTR group
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Figure IA-4

Private equity fund cash �ows: cross-section

This �gure reports the 5th, 25th, 75th, and 95th percentiles for the fraction of to-date capital calls (distri-
butions) in the total amount eventually to be called (distributed) by each fund during the �rst (last) 60
months of its operation. Panel A plots results for the buyout subsample. Panel B reports this analysis for
the venture subsample.

Panel A: Buyout

Panel B: Venture
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Figure IA-5

Timing track records: industry versus overall market

This �gure plots Timing Track Record (TTR) values for the sample private equity funds. TTR measures
the gross-return due to selling near the market peaks during the fund life-time and buying near the troughs

and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception, rt+1:T is continuously

compounded return on public benchmark between date t and the fund's resolution, while Dt[Ct] is the fund's
distribution [capital call] at end of period t. Panel A left (right) chart shows the frequency distributions of
TTRs computed against the broad market index for the buyout (venture) funds using the complete history
of the fund cash �ows. The width of each bin is 0.1 which corresponds to 10% di�ernce in fund life-time
return. Panel B shows TTRs for the respective subsample against (S&P500 subindex of) GICS industry
sector that the respective fund specializes in (Industry TTRs).
The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds of which 159 and 358 invested at
least 50% of the funds capital of the specialization industry. Among these funds, the means for industry-
based TTR are 1.076 and 1.146 for buyout and venture funds, which exceeds the broad market-based TTRs
by 0.027 and 0.054 respectively. As with the full sample, the di�erence is statistically signi�cant only for
venture funds. See section III.B.3 of the main text for multivariate tests, separately for entries and exits.
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Figure IA-6

Informed Rush: more event studies

This �gure plots cumulative return on Industry portfolio around SubResTime for funds with Rush above
vintage year medians. Rush measures the intensity of fund's distributions to LPs right before SubResTime,
based on 15% residual NAV threshold. The medians are computed by fund type (venture or buyout) and
vintage year. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds. The solid line
(Informed Rush) is the mean across Informed funds that have incentives and market-timing skill, as measured
by both toDateTTR>1 and toDateIRR>HR as of SubResTime. The dashed line comprise of all other funds.
Panel A reports results by triennial intervals (of SubResTime occurance) for funds with above-median Rush

while Panel B pools across all SubResTimes and below-median Rush. The bars denote 95% con�dence
interval.

Panel A: High Rush by exit year

Panel B: Full sample: what if no Rush?
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Table IA-1

Timing track records: associations and persistence

This table reports linear regression model estimates of the log of funds' end-life TTRs. TTR measures the
gross-return due to selling near the market peaks during the fund life-time and buying near the troughs

and de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0 is fund inception, rt+1:T is continuously

compounded return on public benchmark between date t and the fund's resolution, while Dt[Ct] is the fund's
distribution [capital call] at end of period t. The explanatory variables are: ln(Size)i (ln(Size)2i ) - log (log-
squared) of the fund $ capital committed; ln(Sequence)i - chronological order of the fund inception date by
given GPs (the private equity management �rm); ln(PME)i - log of the fund's Kaplan and Schoar (2005)
Public Market Equivalent Index; ln(TTR)i−1 - log of the GP's previous fund TTR. TTR, ln(Sequence)i and
PME are measured versus to the GICS industry sector of the fund specialty in Panel A, and versus the broad
market/ all funds by that GPs in Panel B. Speci�cations (2) through (6) include fund vintage-year �xed
e�ects. Standard errors in parentheses are clustered at GP-level, */**/*** denote signi�cance at 10/5/1%
con�dence level. The sample is comprised of 349 (592) U.S.-focused buyout (venture) funds.

Panel A: TTR versus Industry

(1) (2) (3) (4) (5) (6)

Fund size 0.515*** 0.082
(0.162) (0.150)

Fund size squared −0.014*** −0.003
(0.004) (0.004)

Fund sequence 0.057*** 0.049*** 0.040** 0.055**
(0.021) (0.018) (0.017) (0.024)

Fund PME 0.040*** 0.059*** 0.054***
(0.015) (0.020) (0.020)

Previous fund TTR 0.135** 0.115** 0.107**
(0.052) (0.051) (0.049)

Vintage year �xed e�ects No Yes Yes Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.025 0.387 0.386 0.431 0.449 0.457

Panel B: TTR versus Broad Market

(1) (2) (3) (4) (5) (6)

ln(Size)i 0.164* 0.002
(0.085) (0.072)

ln(Size)2i −0.005** −0.001
(0.002) (0.002)

ln(Sequence)i 0.048*** 0.034*** 0.015* 0.011
(0.009) (0.008) (0.009) (0.014)

ln(PME)i 0.037*** 0.044*** 0.043***
(0.007) (0.010) (0.010)

ln(TTR)i−1 0.108** 0.093* 0.093*
(0.055) (0.049) (0.050)

Vintage �xed e�ects No Yes Yes Yes Yes Yes

Observations 756 756 756 404 404 404
R2 0.035 0.468 0.482 0.470 0.516 0.517
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Table IA-2

Informed Rush: robustness to variable de�nition

This table reports predictive regressions of the fund industry returns by Informed Rush, a proxy for the
carried interest �cashed-in� by GPs with a positive track record of market timing in the past. As dis-
cussed in the main text, a negative α-estimate from the following model identi�es market timing skill by GPs:

E[IndustryReturn1:12
ij ] = α · InformedijRush20ij + α0Informedij + α1Rush20ij + λj ,

where IndustryReturn1:12ij is a mean monthly return on S&P500 subindex for the GICS industry sector that
fund i specializes in over 12 months following the fund i SubResTime, λj � fund vintage year �xed e�ects;
Rush is a fraction of fund distributions over the last 6 quarters in the funds' total-to-date: Rush20 = 1 if
Rush >= 0.2 and zero otherwise. In speci�cations (1) and (3) [(2) and (4)], Informedij is the interaction
between two dummies toDateTTR > 1 and toDateIRR > Hurdle, while speci�cations (2) and (4) also
include the two dummies separately as well. TTR measures the fund gross return to date due to selling at

market peaks and buying at troughs and is de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0

is fund inception, rt+1:T is continuously compounded return on the S&P500 subindex between date t and
the fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t, and DT equals
the last most reported NAV corresponding to SubResTime. SubResTime is the �rst quarter when fund NAV
drops below 15% of the fund total distributions up to that quarter. Speci�cations (3)-(4) include additional
return-predictive covariates (see Table II of the main text). Standard errors in parentheses are clustered at
SubResTime, */**/*** denote signi�cance at 10/5/1%. The sample is comprised of 349 (592) U.S.-focused
buyout (venture) funds.

(1) (2) (3) (4)

toDateTTR>1 × toDateIRR>Hurdle × Rush20 −0.010*** −0.010* −0.005* −0.009*
(0.003) (0.006) (0.003) (0.005)

toDateTTR>1 × toDateIRR>Hurdle −0.000 0.003 0.002 0.004
(0.003) (0.004) (0.002) (0.003)

toDateTTR>1 × Rush20 0.000 0.004
(0.004) (0.004)

toDateIRR>Hurdle × Rush20 −0.000 0.001
(0.004) (0.003)

toDateTTR>1 −0.001 −0.002
(0.004) (0.002)

toDateIRR>Hurdle −0.005* −0.002
(0.003) (0.003)

Rush20 0.001 0.001 0.002 0.001
(0.002) (0.003) (0.002) (0.003)

Vintage �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes
Observations 893 893 892 892
R2 0.212 0.218 0.444 0.445
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Table IA-3

Return predictability and earnings news: full IV

Panel A of this table reports instrumental variable regression estimates of the following model:
E[Rushij ] = λRj + cRi + αR

[
Informedij IndReturn1:12ij Informedij IndReturn1:12ij

]
,

where Rushij measures the intensity of fund i distributions to LPs right before SubResTime; Informedij is
an indicator for the presence of incentives and market-timing skill; IndReturnij is the mean monthly return
on Industry over 12 months following fund i SubResTime, and aRj �vintage year �xed e�ects. Informed,
IndReturn, and their interaction are instrumented with the IndustryEPSsurprise over the respective pe-
riod, the propensity for the fund to be Informed, and their interaction. Informed are funds with both
toDateTTR>1 and toDateIRR>HR as of SubResTime. In speci�cations (1) and (3), SubResTime is based
on 15% residual NAV threshold as opposed to 20% in speci�cations (2) and (4). All speci�cations include
vintage group �xed e�ects, while speci�cations (3) and (4) also include Predictive covariates, cRi . The propen-
sity to be Informed is obtained from a probit model (as reported in speci�cation (1) of Panel B with pooled
15% and 20% SubResTimes) and is set to missing whenever the fund has fewer than �ve peers. Mfx denote
marginal e�ects evaluated at means. 1st stage K-P Wald stat is the partial F -statistic from Kleibergen and
Paap (2006) Wald test�see Internet Appendix for �rst stage details. Standard errors in parentheses are
robust to heteroskedasticity, */**/*** denote signi�cance at 10/5/1%. The sample is comprised of 349 (592)
U.S.-focused buyout (venture) funds.

Panel A: Instrumentation of the Informed Status with its Propensity

15%thld 20%thld 15%thld 20%thld
(1) (2) (3) (4)

Informed(D) × IndustryReturn −10.537** −9.510** −9.367** −7.843*
(4.598) (4.382) (4.613) (4.265)

IndustryReturn 1.336 0.744 2.537 1.468
(2.790) (2.719) (2.756) (2.787)

Informed(D) −0.104 −0.139 −0.088 −0.094
(0.085) (0.088) (0.124) (0.140)

Vintage year �xed e�ects Yes Yes Yes Yes
Predictive covariates No No Yes Yes

1st stage K-P Wald statistic 17.5 18.6 16.5 12.0
Observations 628 695 628 695

Panel B: Informed Status Probability Model

(1) (2)

β/(t-stat) Mfx β/(t-stat) Mfx

Median peer PME 1.115*** 0.4384 1.210*** 0.4741
(6.29) (6.54)

Median peer TTR 3.575*** 1.4051 1.510*** 0.5918
(8.93) (2.94)

Industry Return since inception 0.274*** 0.1075 0.040 0.0157
(5.46) (0.38)

Previous fund TTR>1 0.194* 0.0763 0.330*** 0.1293
(1.69) (2.78)

Vintage year �xed e�ects No Yes

Observations 1,349 1,349
Pseudo R2 (Baseline probability) 0.153 (42.4%) 0.211 (42.7%)
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Table IA-4

Does Informed Rush sacri�ce holding period returns?

This table reports OLS estimates of the following model:
E[HARij ] = α · InformedijRushij + α0Informedij + α1Rushij + λj

where HARij is the holding period abnormal return of fund i as measured by a natural log of the Kaplan-
Schoar PME at the latest available date (henceforth, Last PME) against the fund industry and the broad
market in speci�cations (1) and (2), respectively. In speci�cations (3) and (4), HARij is a log of a ratio
of Last PME (industry or market) to the respective PME as of the fund's 5th anniversary. Rushij � a
fraction of distributions (to LPs) over the last 6 quarters before the SubResTime in the funds' total-to-date.
Informedij is the main e�ects and the interaction of two dummies which proxy for the presence of skill and
�nancial incentive and are based on whether TTR (IRR) as of SubResTime exceeds 1 (Hurdle rate), λj �
fund vintage-year and industry �xed e�ects. TTR measures the fund gross return to date due to selling at

market peaks and buying at troughs and is de�ned as
∑T

t=0 Dt·exp{r1:T ·(1−t/T )}∑T
0 Ct·exp{r1:T ·(1−t/T )} /

∑T
t=0 Dt·exp{rt+1:T }∑T
0 Ct·exp{rt+1:T }

, where t = 0

is fund inception, rt+1:T is continuously compounded return on public benchmark between date t and the
fund's resolution, while Dt[Ct] is the fund's distribution [capital call] at end of period t, ant DT equals the
last most reported NAV corresponding to SubResTime. SubResTime is the �rst fund-quarter with non-zero
cash-�ows when fund NAV drops below 15% of the fund total distributions up to that quarter. The sample is
comprised of 349 (592) U.S.-focused buyout (venture) funds and for the purpose of this analysis is restricted
to funds with SubResTime of at least 7 years since inception. The industry and market returns are proxied
by, respectively, S&P500 subindex corresponding to the GICS Industry sector of the fund specialty and
CRSP valued-weighed index. Standard errors in parentheses are clustered by fund vintage year, */**/***
denote signi�cance at 10/5/1%.

PME 0:T PME 5y:T
industry market industry market

(1) (2) (3) (4)

Rush e�ects:

toDateTTR>1 × toDateIRR>Hurdle × Rush 0.068 0.034 0.415 0.362
(0.602) (0.624) (0.568) (0.536)

toDateTTR>1 × Rush 0.234 0.430 0.041 0.143
(0.440) (0.428) (0.359) (0.392)

toDateIRR>Hurdle × Rush 0.286 0.360 −0.058 0.053
(0.399) (0.354) (0.398) (0.358)

Rush −0.514* −0.567** 0.104 0.073
(0.256) (0.242) (0.224) (0.205)

Base e�ects:

toDateTTR>1 × toDateIRR>Hurdle 0.150 0.087 −0.025 −0.066
(0.153) (0.159) (0.175) (0.160)

toDateTTR>1 −0.342*** −0.239** −0.300*** −0.185**
(0.099) (0.092) (0.086) (0.089)

toDateIRR>Hurdle 0.659*** 0.718*** 0.361** 0.404***
(0.120) (0.112) (0.146) (0.132)

Vintage �xed e�ects Yes Yes Yes Yes
Industry �xed e�ects Yes Yes Yes Yes

Sum(Rush e�ects) 0.074 0.257 0.502 0.631
p-value 0.757 0.422 0.000 0.001

Observations 796 796 796 796
R2 0.383 0.433 0.271 0.279
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Table IA-5

Risk shifting evidence

This table reports simulation-based estimates of abnormal volatility of Industry returns. Industry returns

are of S&P500 subindex corresponding to the GICS Industry sector of the fund specialty. The estimation
methodology is described in section IA-2 of this appendix. In short, I (1) estimate an auxiliary model model
of fund �xed e�ects for SubResTime and Rush, (2) independently simulate 1,000 blocks of up to 100 random
exits per fund under this model, and (3) pool main model estimates over these independent simulations.
The main model is:

E[IndustryV oltyij,h] = β · InformedijRushij + γ1Informedij + γ2Rushij + λj ,
where IndustryV oltyij,h annualized standard deviation of monthly returns {-6 to -0} and {-12 to -8} quarters
of fund i actual (i.e. Informedij = 1) or simulated SubResTime; Rushij � actual or simulated fraction of
distributions over the last 6 quarters in the funds' total-to-date, λj � �fund �xed e�ects� estimates from the
auxiliary model. The estimation is over funds with actual stopping-time of at least 8 years that as of the 5th
anniversary had (i) a POSITIVE track record of market timing as measured by TTR> 1 or (ii) where the
�rm faces high survival risk as measured by net-of-fees IRR in the bottom tercile among type×vintage peers
(Btm) and/or no successor fund raised up until at least the 6th quarter before SubResTime (NoNext). TTR
measures the fund gross return to date due to selling at market peaks and buying at troughs. Speci�cations
(1) and (3) report results for the volatility over the {-6 to 0 quarters} window from the stopping-quarter
which corresponds to Rush measurement period. Speci�cations (2) and (4) report results for the {-12 to -8
quarters} window which corresponds to at least the sixth year of the fund operations. Note that high values
of Rush indicate that relatively few distributions to LPs have been made before quarter-6 from the stopping.
Besides the main terms of Informed constituents: (TTR>1), (Btm|NoNext = 1), (Btm|Y esNext = 1),
(Top|NoNext = 1) and their interaction, control variables include Rush and the projections of fund �xed
e�ect (from the auxiliary model). In Speci�cations (3) and (4) control variables also include the levels of VIX
index as the fund stopping-quarter and the {-12 to -8 quarters} or {-6 to 0 quarters} window respectively.
Standard errors in parentheses are clustered at SubResTime, */**/*** denote signi�cance at 10/5/1%.

-6:0q -12:-8q -6:0q -12:-8q
(1) (2) (3) (4)

TTR>1 × Btm|NoNext × Rush 0.025 0.075** 0.007 0.064**
(0.027) (0.038) (0.022) (0.030)

TTR>1 × Top|NoNext × Rush 0.007 −0.010 0.012 −0.010
(0.020) (0.025) (0.016) (0.019)

TTR>1 × BtmYes|Next × Rush 0.006 −0.015 0.001 −0.007
(0.012) (0.017) (0.009) (0.015)

Btm|NoNext × Rush −0.001 −0.009 0.006 −0.010
(0.012) (0.015) (0.007) (0.012)

Top|NoNext × Rush −0.006 0.018 −0.006 0.007
(0.011) (0.019) (0.007) (0.016)

Btm|YesNext × Rush 0.006 0.016* 0.000 0.002
(0.006) (0.008) (0.004) (0.008)

TTR>1 × Rush −0.006 −0.006 0.003 −0.003
(0.007) (0.008) (0.005) (0.007)

Rush, Informed �xed e�ects Yes Yes Yes Yes
Fund �xed e�ects Yes Yes Yes Yes
VIX levels No No Yes Yes
# of Actual funds 596 596 596 596
Pseudo funds per 1 Actual 94.6 94.6 94.5 94.1
# of independent simulations 1000 1000 1000 1000

IA-29

Electronic copy available at: https://ssrn.com/abstract=2802640



References for Internet Appendix

Barber, Brad M, and Ayako Yasuda, 2017, Interim fund performance and fundraising in

private equity, Journal of Financial Economics 124, 172�194.

Braun, Reiner, Tim Jenkinson, and Ingo Sto�, 2017, How persistent is private equity per-

formance? evidence from deal-level data, Journal of Financial Economics 123, 273�291.

Chung, Ji-Woong, Berk A Sensoy, Lea Stern, and Michael S Weisbach, 2012, Pay for perfor-

mance from future fund �ows: The case of private equity, The Review of Financial Studies

25, 3259�3304.

Degeorge, Francois, Jens Martin, and Ludovic Phalippou, 2016, On secondary buyouts,

Journal of Financial Economics 120, 124�145.

Dixit, Avinash K, Robert K Dixit, and Robert S Pindyck, 1994, Investment under uncertainty

(Princeton university press).

Efron, Bradley, and Robert J Tibshirani, 1994, An introduction to the bootstrap, volume 57

(CRC press).

Epstein, Larry G, and Martin Schneider, 2003, Recursive multiple-priors, Journal of Eco-

nomic Theory 113, 1�31.

Fama, Eugene F, and James D MacBeth, 1973, Risk, return, and equilibrium: Empirical

tests, Journal of Political Economy 607�636.

Ferson, Wayne E, and Campbell R Harvey, 1999, Conditioning variables and the cross section

of stock returns, The Journal of Finance 54, 1325�1360.

Galai, Dan, and Ronald W Masulis, 1976, The option pricing model and the risk factor of

stock, Journal of Financial economics 3, 53�81.

Gompers, Paul, and Josh Lerner, 1999, An analysis of compensation in the US venture

capital partnership, Journal of Financial Economics 51, 3�44.

Jensen, Michael C, and William H Meckling, 1976, Theory of the �rm: Managerial behavior,

agency costs and ownership structure, Journal of Financial Economics 3, 305�360.

Kaplan, Steven N, and Per Strömberg, 2009, Leveraged buyouts and private equity, Journal

of Economic Perspectives 23, 121�46.

IA-30

Electronic copy available at: https://ssrn.com/abstract=2802640



Kleibergen, Frank, and Richard Paap, 2006, Generalized reduced rank tests using the singular

value decomposition, Journal of Econometrics 133, 97�126.

Knight, Frank Hyneman, 1921, Risk, uncertainty and pro�t , volume 31 (Houghton Mi�in).

Korteweg, Arthur, and Morten Sorensen, 2017, Skill and luck in private equity performance,

Journal of Financial Economics 124, 535�562.

Metrick, Andrew, and Ayako Yasuda, 2010, The economics of private equity funds, The

Review of Financial Studies 23, 2303�2341.

Miao, Jianjun, and Neng Wang, 2011, Risk, uncertainty, and option exercise, Journal of

Economic Dynamics and Control 35, 442�461.

Robinson, David T, and Berk A Sensoy, 2016, Cyclicality, performance measurement, and

cash �ow liquidity in private equity, Journal of Financial Economics 122, 521�543.

Skoulakis, Georgios, 2008, Panel data inference in �nance: Least-squares vs fama-macbeth,

University of Maryland working paper.

Wooldridge, Je�rey M., 2002, Econometric Analysis of Cross Section and Panel Data (MIT

Press, Cambridge, MA).

Zellner, Arnold, 1962, An e�cient method of estimating seemingly unrelated regressions and

tests for aggregation bias, Journal of the American Statistical Association 57, 348�368.

IA-31

Electronic copy available at: https://ssrn.com/abstract=2802640


