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Abstract

In stark contrast with liquid asset returns, I find that commercial real estate idiosyncratic return

means and variances do not scale with the holding period, even after accounting for all cash flow relevant

events. This puzzling phenomenon survives controlling for vintage effects, systematic risk heterogeneity,

and a host of other explanations. To explain the findings, I derive an equilibrium search-based asset-

pricing model which, when calibrated, provides an excellent fit to transactions data. A structural model

of transaction risk seems crucial to understanding real estate price dynamics. These insights extend to

other highly illiquid asset classes, such as private equity and residential real estate.

*I am grateful to the National Council of Real Estate Investment Fiduciaries (NCREIF) for providing me with the data,
and especially to Jeff Fisher for helping me understand it. I also benefited from feedback from Bob Connolly, Lynn Fisher,
Andra Ghent, David Geltner, Adam Gurren, Dave Hartzell, Allen Head, Robert Kimmel, Crocker Liu, Greg MacKinnon, Ludo
Phalippou, Tim Riddiough, Kanis Saengchote, Morten Sørensen, Chester Spatt, Richard Stanton, Nancy Wallace, seminar
participants at Baruch College, Duke University, NC State University, the University of Calgary, the University of Cincinnati,
and conference participants at the NUS-IRES 2015 conference, the 2015 Summer Real Estate Symposium, the 2015 UBC-
ULE Symposium, the 2015 Fall HULM Conference, Inquire Europe Spring 2016 Conference, the 2017 Utah Winter Finance
Conference, the March 2017 IPC Conference, and the 2017 Real Estate Price Dynamic Workshop at MIT. Finally, I wish
to thank the editor, Stijn van Nieuwerburgh, and two anonymous referees for their many thoughtful comments. Please send
correspondence by email to sagi@unc.edu.

Electronic copy available at: https://ssrn.com/abstract=2596156



1 Introduction

Real estate is an important investment class. As of 2019, MSCI estimated that roughly $9 trillion

(USD) in global real estate assets were held for investment purposes under professional institutional

management, while Savills estimated in 2016 that the potential stock of investable institutional-quality

global commercial real estate (CRE) was $19 trillion.1 Relatedly, CRE mortgages totaled over $4 trillion

in the U.S. alone as of 2019 and comprised 35% of all loans for (mostly regional) banks with assets under

$10B.2 Despite the significance of CRE as an investment class, price dynamics for individual assets are

not as well understood as those belonging to more liquid categories such as equities, fixed income,

commodities, currencies, and derivatives. This gap is important to address because asset-specific price-

dynamics can significantly impact the pricing of non-recourse mortgages, the concentrated portfolios

held by many real estate investors, and the option-like features in investment management contracts

prevalent among private equity funds.3

The few papers that attempt to quantify attributes of property level risk and return assume that

an individual property’s log-value evolves as a random walk with drift (RWD).4. This is consistent

with the prevailing paradigm in asset pricing (Campbell, Lo, and MacKinlay, 1997) and is the modeling

assumptions most widely adopted in the applied theory literature, going back to Williams (1993). This

paper makes two contributions to current understanding of CRE asset price dynamics, and the insights

should generalize to other highly illiquid asset investments. First, I demonstrate with an exhaustive

series of empirical tests that the RWD assumption is far from an appropriate description for CRE asset

prices. Second, I derive an equilibrium search-based model that is able to fit observed dynamics of prices

and turnover statistics, as well as transaction dispersion relative to perceived market prices.

The literature is full of hints that real estate prices and those of other illiquid assets deviate from

a RWD, but such findings have been typically dismissed or viewed as data artifacts (e.g., measurement

1See MSCI’s “Real Estate Market Size 2018”, and Savills’ “Around the World in Dollars and Cents (2016)”.
2See Table L.217 of the Financial Accounts Guide published by the Board of Governors of the Federal Reserve System

and the Yardi Matrix Bulletin (July 2018), titled “Regional/Local Banks Eat More of the Commercial Mortgage Pie: When
is Enough?”.

3Real estate corresponds to roughly 15% of private equity assets (Preqin, 2019). Asset-level risk may also be material for
roughly a third of CRE investors, likely undiversified, whom Geltner et. al (2013) identify as “...private investors, relatively
small, typically locally oriented often family-based enterprises.”

4See, for instance, Downing, Stanton, and Wallace (2008); Plazzi, Torous, and Valkanov (2008); Peng (2016).
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error and/or missing variables). The calling card of a RWD is the scaling of the mean and variance of

log-price changes with the time between changes (i.e., the holding horizon). Case and Shiller (1987),

Abraham and Schauman (1991), Goetzmann (1993), Goetzmann and Spiegel (1995), and Calhoun

(1996), find that return scaling is violated for house price increases based on repeat sales, and attribute

the anomalies to missing variables (e.g., investment in the form of renovation activity or price mis-

measurement). Using detailed property-level data from the National Council of Real Estate Investment

Fiduciaries (NCREIF), which includes capital expenditures, I robustly demonstrate that CRE prices

are inconsistent with RWD dynamics even after accounting for all cash flow events. Specifically, both

risk-adjusted mean (i.e., “alpha”) and variance of property log-returns fail to scale with the return

horizon, and both exhibit large positive atemporal components: Return means and variances remain

significantly positive even when the holding period is extrapolated to zero. The atemporal variance of

roughly 3% is two to three times the idiosyncratic annual diffusion variance. The atemporal alpha is

absurdly high, extrapolating to double-digit percentage points as the holding period vanishes.

With perfectly liquid assets, the RWD anomalies would present an arbitrage opportunity consisting

of sequentially purchasing and then instantly selling the asset an arbitrary number of times over a

finite time interval.5 The illiquidity of real estate assets rules out the executability or profitability of

such an exercise. Indeed, by providing strong evidence that their source is transactional, I am able

to link the root cause of the return anomalies to illiquidity rather than missing variables or a host

of other explanations. To my knowledge, aside from this paper and contemporaneous complementary

work in residential real estate by Giacoletti (2017), no other paper has carefully demonstrated that the

deviation from RWD is an inherent feature of real estate price data nor made definitive progress in

pinning down the reasons. The fact that empirical deviations from RWD have been observed (though

not as thoroughly investigated) with other illiquid assets serves to both robustify my findings with CRE

assets and, more importantly, strongly suggest that transactional frictions are essential to the modeling

of price dynamics across all highly illiquid asset types.6

5Because each instant two-way transaction is an independent draw with strictly positive average return, the accumulated
return of this strategy would result in arbitrarily large profits at negligible risk.

6For a review of the financial econometrics used to analyze non-real estate private equity markets see, for instance, Ang
and Sorensen (2012). For evidence of atemporal mean and variance in these markets see Axelson, Sorensen, and Stromberg
(2015) and Lopez-de Silanes, Phalippou, and Gottschalg (2015).
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The second main contribution of this paper is to provide the theoretical link between illiquidity and

the observed deviations from RWD in real estate price data. I do this by deriving a search-based model

featuring two key mechanisms. The first is dispersion in the relative valuations of randomly matched

counterparties, which leads to idiosyncratic randomness in the transaction prices of otherwise identical

properties. This accounts for atemporal variance and shows up in an asset’s observed price series as

variance that depends on the number of transactions observed and not only on the holding horizon.

Because random matching and bargaining are common devices, many search models exhibit atemporal

variance. The second key mechanism is the presence of “intermediate” valuation investors, coupled with

the highly plausible assumption that private valuations change slowly.7 If a recent property buyer is

slow to change his or her valuation, the holding period will be short only if a much better offer happens

to quickly come along. This is most likely to happen to intermediate valuation investors because “better

offers” are not available to high valuation owners, while low valuation investors are rarely recent buyers.

The observed positive short-term “alpha” is earned by luck and not by design. Less fortunate investors

do not sell after a short period of time and do not show up in a panel of short holding period transactions.

In the limit of a liquid market the model exhibits RWD returns, highlighting the connection between

illiquidity and the atemporal return anomalies. To my knowledge, among existing search models in

real estate (see Han and Strange, 2015, for a review), mine is the first to incorporate the second key

mechanism and is the only one able to explain the atemporal alpha (through selection bias in repeat

sales holding periods).8 From that perspective, the model can be viewed as a novel contribution to the

prodigious real estate search literature and opens the door to new theoretical and econometric analyses

of transaction-level data.

The model allows for cyclical dynamics in the property market and investors’ cost of capital. Beyond

the qualitative economics, the model’s steady-state equilibrium can be calibrated to fit a large set of

transaction-based moments from NCREIF property data, conditional on boom or bust market states.

Among these are holding period return moments for properties bought/sold at different cycle points,

quarterly turnover, the fraction of properties sold after five years, the average transacted income-to-

7The two key model mechanisms are distinct. It is theoretically possible for private valuations to become more dispersed
even as intermediate valuation investors become rarer (or vice versa).

8Similar features are employed in contemporaneous papers by Lovo and Spaenjers (2018) and Hugonnier, Lester, and Weill
(2018) studying, respectively, art auction markets and over-the-counter endogenous intermediation chains.
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price ratio (or “cap rate”), and the distribution of transactions relative to perceived market prices (i.e.,

appraisals). The model fits the data very well and fully accounts for atemporal alpha and variance. For

the best fit parameter set, as the market moves from an expansion to a contraction, investors’ discount

rates increase and strongly revert towards consensus. The former leads to aggregate asset devaluation

and the latter to a dramatic decline in liquidity.

In contrast with a liquid market, sellers in the model must trade off price and certainty of execution.

I quantify this notion of transaction risk in various ways: The probability of transacting at or above the

average transaction price, expected or median time on market given a reservation price, and expected

discount conditional on a binding liquidation horizon. The calibrated model implies a reduction in

high-valuation prospective buyers during periods of market contractions, and this makes the tension

between price and speed of execution more severe as reflected across all measures. The magnitude of

model-imputed transaction risk and its pronounced cyclical variation has significant implications for

the pricing of property derivative assets such as mortgage loans and mortgage backed securities. These

could be important to incorporate into the current literature, where RWD assumptions are prevalent.

The paper is organized into an empirical (§2), model (§3), calibration (§4), applications (§5), discus-

sion (§6), and concluding (§7) sections. Appropriate literature is discussed in each section, and online

appendices provide supplementary details and analyses.

2 Evidence on CRE Holding Period Risk and Returns

This section and the associated Appendix A provide evidence for rejecting a random walk with drift

(RWD) in commercial real estate (CRE) returns and trace the source to transactional frictions.

2.1 Property-level Data

Property-level CRE data comes from the National Council of Real Estate Investment Fiduciaries

(NCREIF) and consists of quarterly financial and accounting information reported by member funds

between 1978Q1 and 2017Q2. The dataset contains property acquisition dates and transaction prices.

If a sale (or partial sale) took place, the sale date and net/gross prices (excluding/including selling
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expenses) are typically reported.9 For each property and quarter (usually) starting from the acquisition

quarter (or 1978Q1 if acquisition is earlier) until 2017Q2 (or until the property is sold or otherwise

exits the dataset), market value appraisals and net operating income (NOI) are likewise reported. Also

available are details about quarterly capital expenditures (CapEx), property location, age, property

type, leverage, ownership structure, owning fund, and type of fund. A flag reports whether a property

qualifies for inclusion in the NCREIF Price Index (NPI). Qualifying properties have a minimum 60%

occupancy requirement, correspond to one of the major property types (Apartments, Industrial, Retail,

or Office), and are owned by tax-exempt institutions. Such properties tend to be well-maintained, are

located in high-demand markets, and most would be viewed as “core assets” by professionals.

The holding period of property i is calculated as (qis−qia+1)/4 where qis is the sale quarter and qia

is the acquisition quarter. Let rf,t denote the continuously compounded 3-month Treasury Bill quarterly

rate. For a property bought at date t and sold at date T , denote the purchase price by Pit, capital

expenditures at quarter s ≥ t by Cis, partial net sales at s ≥ t by pis, and the net final disposition

price by PiT . Total holding-period returns depend on the reinvestment strategy of interim cash flow.

With liquid assets, it is customary to assume that income is reinvested in the same asset but this

strategy is not implementable with real properties. One could employ some feasible income investment

strategy (e.g., bonds, REITs, etc.) but, because CRE generates considerable income, longer holding

period return characteristics would be dominated by those of the reinvestment alternative rather than

the property. For this reason, I mainly focus on price appreciation returns. As will be shown, including

income reinvested at LIBOR, does not meaningfully alter any results or conclusions.

I calculate the excess log of price-appreciation return over property i’s holding period as,

ri = ln

( ∑T−1
s=t pise

∑T
s′=s+1

rI,s′ + PiT

Pite
∑T
s′=t rf,s′ +

∑T
s=t Cise

∑T
s′=s+1

rf,s′

)
, (1)

where rI,s is the quarter s return on investing the proceeds from partial sales. Equation (1) corresponds

to an excess return because the denominator is capitalized to date T using a risk-free return. While the

9The NCREIF data contributor manual states that: “Selling expenses are directly attributable to the sale which are the
seller’s responsibility including, but not limited to, items such as commissions, disposition fees, legal fees, title insurance,
escrow fees, etc.”
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numerator depends on a discretionary investment strategy for partial sales, in practice this corresponds

to fewer than 5% of properties and the reinvestment strategy chosen has negligible impact on the analysis.

The reinvestment return I use for rI,s is the corresponding quarter’s NPI total index return for that

property’s major property type. Henceforth, to avoid tedious expressions, unless otherwise indicated I

employ the term “return” to refer to the quantity calculated in Eq. (1).

The data contains properties with missing or inconsistent entries that I attempt to filter using a set

of criteria detailed in Appendix A.1.10 To mitigate any influence of tax motives on holding periods, I

restrict attention to properties that qualified for the NPI when first acquired. To help mitigate bias from

unreported capital expenditures, I require there to be at most a lag of one quarter from the acquisition

date of a property to the first time it appears in the dataset. The filtering results in 4,535 single-

property repeat sale transactions, 17 portfolio-property dispositions, 40 property foreclosures, and 3,628

properties that had not exited as of 2017Q2. Of these, I exclude the 1% of return observations with the

greatest discrepancy between appraisal returns and those calculated from Eq. (1).

Table 1 reports quarterly panel statistics for the filtered dataset described above. Differences between

sold and unsold properties are mostly attributable to time period (the median year for sold/unsold

properties is 2005/2013). NCREIF NPI properties tend to be medium to large in size, have high

occupancy, and relatively low leverage. CapEx spending is lumpy but averages roughly 2% per year

for sold properties. About 10% of these experience CapEx spending of 10% or more of initial appraisal

value in the first two years and the standard deviation of total CapEx in the first two years is about 9%.

Thus, consistent with Goetzmann and Spiegel (1995), CapEx can drive sizable changes to a property’s

gross market value appreciation in the first two years after acquisition.

Table 2 reports on additional property characteristics. NCREIF property ownership is organized

through fund structures, some of which are sponsored by the largest private equity investment firms

in the U.S. Roughly a quarter of properties experience some financing through a joint venture (JV)

partnership. About 13% are owned through a private closed-end fund (CEF) structure whereby the

managers raise capital commitments from limited partners for a period of time, deploy this capital over

a subsequent limited period, and then liquidate assets to meet a contracted fund termination date.

10Appendix A.4 reports on the robustness of the main empirical analysis to alternative filters.
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Table 1: Summary statistics from the NCREIF panel, 1978Q1-2017Q2. The data is cleaned according to the procedure outlined in Appendix A.1.

Acquisition cap rates are the property’s first four quarters of NOI divided by the reported purchase price. NCREIF reports quarterly returns (Qtrly

Ret) based on quarterly appraised market value (MV), net operating income (NOI), and capital expenditures (CapEx). Loan to value (LTV) ratios

are calculated using MV and the balance remaining on loans secured to the property. The CapEx ratio is that quarter’s CapEx divided by MV. Selling

transaction costs (Sale TCost) are calculated using reported differences between gross and net sales prices, divided by gross price. The variable “HP

PApp Ret” is as calculated in Eq. (1) and the corresponding return calculated using appraisal values is “HP NPI PApp Ret”. Turnover statistics

are calculated using data from 1983q2, a year after the NCREIF began recording property data. Quarterly turnover is calculated as the number of

sold properties each quarter divided by the number of properties in the dataset that quarter. An estimate of the distribution of holding periods is

calculated from the ratio of properties sold h years after purchase relative to all properties purchased at or before 2017q2 −h (the mean and variance

are estimated from this distribution to avoid bias). To avoid the impact of extreme outliers, means and standard deviations are reported after dropping

values below the 0.5 and above the 99.5 percentiles.

Variable N mean sd p1 p5 p10 p25 p50 p75 p90 p95 p99

Unsold properties as of 2017Q2

Acquisition cap rate 2,935 0.059 0.029 -0.016 0.019 0.033 0.046 0.057 0.070 0.091 0.107 0.225
Qtrly Ret 80,269 0.020 0.045 -0.154 -0.047 -0.010 0.011 0.017 0.031 0.062 0.089 0.173
LTV 75,195 0.26 0.29 0 0 0 0 0.099 0.495 0.640 0.755 1.011
MV ($ Millions) 80,269 56 70 1 3 6 15 35 70 137.000 219 548
SqFt (1000’s) 80,191 268 253 - 7 41 95 183 335 554.663 846 1,435
Age 73,716 22 17 2 4 6 10 17 29 43.000 56.0 107
Occupancy 78,542 0.89 0.12 0.398 0.683 0.797 0.913 0.970 1.000 1.000 1.000 1.000
CapEx Ratio 80,269 0.0036 0.0084 -0.0030 0 0 0 0.001 0.003 0.010 0.018 0.056

Sold properties

Acquisition cap rate 4,672 0.073 0.033 -0.042 0.016 0.036 0.054 0.074 0.092 0.106 0.120 0.189
Qtrly Ret 120,936 0.017 0.057 -0.255 -0.090 -0.035 0.009 0.019 0.028 0.066 0.109 0.260
LTV 74,166 0.33 0.32 0 0 0 0 0.384 0.596 0.753 0.866 1.127
MV ($ Millions) 120,936 26 37 - 1 2 6 14 31 59.114 87 179
SqFt (1000’s) 120,936 230 217 - 0 37 84 157 278 482.829 643 1,253
Age 94,304 20 13 2 4 5 10 17 26 34.000 42.0 80
Occupancy 98,258 0.87 0.13 0.330 0.620 0.732 0.870 0.950 1.000 1.000 1.000 1.000
CapEx Ratio 117,246 0.0045 0.0098 -0.0033 0 0 0 0.001 0.004 0.013 0.023 0.068

Sale TCost 5,002 0.025 0.025 0.000 0.000 0.003 0.010 0.018 0.032 0.052 0.070 0.167
HP PApp Ret 4,472 -0.22 0.47 -1.825 -1.215 -0.862 -0.462 -0.128 0.104 0.297 0.417 0.760
HP NPI PApp Ret 4,472 -0.22 0.54 -1.980 -1.332 -0.947 -0.505 -0.136 0.130 0.371 0.580 0.994
Qtrly Turn 179,708 0.030 0.019 0.002 0.008 0.011 0.017 0.027 0.038 0.054 0.068 0.100
Holding Period 8,788 8.2 5.2 0.6 1.4 2.1 3.8 7.3 11.3 15.5 17.9 22.7
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Additional fund structures include separate account funds dedicated to a single client, and private

open-end funds that permit capital contribution at any time as well as redemption of capital by existing

investors. The Pareto Principle (the “80-20” Rule) applies in that roughly 80% of the properties are

managed by 20% of the (LgMgr) funds. Heterogeneity in ownership structure proves important for

understanding the property-level return characteristics of the data and for interpreting the model.

Table 2: Additional summary statistics reporting on ownership, type and location characteristics of properties in

the NCREIF dataset (cleaned according to the procedure outlined in Appendix A.1). JV corresponds to the number

of properties that have been part of a joint venture at any point during their tenure with the owning NCREIF

member. CEF denotes properties held by closed-end private equity funds. LgMgr corresponds to properties held

by a large fund (the set of largest funds owning 80% of properties). Property types (Apartments, Industrial, Office,

or Retail) are denoted as A, I, O and R. The six cities with the greatest share of properties are denoted by their

international airport codes.

Unsold properties as of 2017Q2
Not JV JV Not CEF CEF SmMgr LgMgr
2,536 1,149 3,305 380 662 3,023

A I O R ATL ORD DFW LAX SFO IAD
836 1,325 878 646 207 237 224 454 266 250

Sold properties
Not JV JV Not CEF CEF SmMgr LgMgr
3,994 1,109 4,325 778 1,044 4,059

A I O R ATL ORD DFW LAX SFO IAD
1,172 1,895 1,289 747 372 335 357 516 299 359

A plurality of the properties in the dataset correspond to industrial CRE (I). These include ware-

house, manufacturing, research, and showroom facilities. Office (O) and multifamily (A) properties make

up the majority of the remainder. Retail properties (R) form the smallest category. Table 2 documents

all MSAs with more than 500 properties in the dataset, referring to each by its major airport code.

These account for 44% of properties. Prominently missing from this list is New York City, highlighting

the fact that NCREIF membership is only representative of CRE ownership and management through

investment fiduciaries (as opposed to direct ownership). That said, the properties held by NCREIF

members in 2017Q2 amounted to over $500 billion, and estimated to be around a sixth of all U.S. CRE

professionally managed by investment institutions and funds.
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Table 3: Simple holding period return analysis. The panels report means and variances for holding period returns as

calculated in Eq. (1) (including and excluding income) for the NCREIF dataset (cleaned according to the procedure

outlined in Appendix A.1). Extreme return observations (below the first and above the ninety-ninth percentiles) are

dropped from each nearest-integer holding period bin, (half integer holding periods are randomly rounded either up

or down). The last column is a GLS estimate of the intercept from regressing each row on the holding period. Under

standard asset pricing assumptions the intercept should be zero.

Holding Period (years)
1 2 3 4 5 6 GLS Intercept

Annualized mean return
Excluding income 0.072 0.078 0.040 -0.040 -0.203 -0.189 0.175**
Including income 0.124 0.170 0.191 0.182 0.086 0.165 0.155***

Annualized return variance
Excluding income 0.034 0.067 0.089 0.124 0.131 0.121 0.016*
Including income 0.031 0.061 0.082 0.096 0.101 0.088 0.024**

Number of properties
219 429 579 440 391 361

* p < 0.05, ** p < 0.01, *** p < 0.001

2.2 Reduced-form evidence

Table 3 reports mean and variance for holding period returns calculated both with and without cap-

italized income in the numerator of Eq. (1).11 Here, and in subsequent regressions, I drop extreme

return observations (below the first and above the ninety-ninth percentiles) from each nearest-integer

holding period bin, (half integer holding periods are randomly rounded either up or down). The column

“GLS Intercept” reports an estimate of the intercept from the regression Sτ = a + bτ + ετ where τ is

the holding period, Sτ is the holding period statistic (mean or variance of returns), and ετ is a residual

with heteroskedastic variance determined by the estimation error in Sτ . Under standard asset pricing

assumptions, asset returns are the accumulation of independent shocks through time, and thus return

mean and variance should both scale with the holding period (i.e., the intercept should be zero).

The top two rows document the first key anomaly: Average returns do not scale with horizon and

when extrapolated to an arbitrarily short holding horizon exhibit a large and highly significant intercept.

This is true regardless of the presence of income in returns, consistent with the view that the anomaly

arises from price, rather than income, dynamics. In a liquid market where one can trade quickly, earning

11The additional income term is
∑T−1

s=t incise
∑T
s′=s+1

rLIBOR,s′ where incis is the reported NOI for property i in period s,
and the reinvestment rate, rLIBOR,s′ , corresponds to 3-month LIBOR.
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a finite return over an arbitrarily short period would constitute an arbitrage opportunity. The next two

rows document the second key anomaly: Return variance also does not scale with horizon. Here too,

the extrapolated intercept is significant. Naively, both anomalies appear to violate standard market

efficiency and the RWD assumptions. Note that the variance anomaly is not related to estimation

smoothing or missing investment because the property returns are actual and incorporate CapEx.

In a noteworthy though unpublished study, Ciochetti and Fisher (2002) examine holding-period

internal rates of return (IRRs) in NCREIF data during 1978-2001. Their Table 10 reports average

unadjusted IRRs by holding period. Over holding periods up to sixteen years, where the sample size is

at least 30, short-term IRRs appear to dominate long-term IRRs (there is no test for significance and

standard errors are not reported). While consistent with the average returns in Table 3, IRRs are biased

relative to expected returns and the pattern they find could be mechanically induced.12 Although they

do not comment on their anomalous results, test whether they might be spurious, nor investigate their

economic origin, their analysis provides early hints at an interesting and important anomaly.

2.3 A More Sophisticated Analysis

The analysis above does not control for the fact that properties with different holding periods are likely

to have been held during different years and subjected to different market conditions (see Table A-II in

Appendix A.1). To guard against spurious inference, I develop econometric tests that control for a host

of influences. Consider the following assumptions concerning the returns in Equation (1).

Null hypothesis. The logarithm of capital gains in property i’s price over a short time interval, ∆,

and net of a risk-free alternative takes the form

ri,∆ = αi,t∆ + βi,trm,∆ + σi,t
√

∆εi,∆,

where (i) ε∆ is a standardized shock to property growth and is independent across distinct time intervals

and properties; (ii) rm,∆ represents the influence of systematic shifts in property market values over

12In the simplest case in which cash flow per dollar of initial investment, x̃, is non-zero only at sale, average IRR is just
E[x̃1/n] where n is the holding period. By Jensen’s inequality, E[x̃1/n] (for n > 1) is biased down relative to E[x̃]1/n, and the
bias increases with both the holding period n and the variance of x̃.
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∆; and (iii) αi,t, βi,t and σi,t are constant over the interval ∆, uniformly bounded across all distinct

time intervals and properties, and independent of the history of rm,∆ and ε∆. Moreover, transaction

decisions are unrelated to the history of ri,∆.

This, of course, is a joint null, of which parts (i)-(iii) essentially form the RWD hypothesis. By

assumption, for any holding period, τ , the logarithm of excess capital gains, ri,τ , is a sum of incremental

returns as defined above. Because αi,t, βi,t and σi,t are uniformly bounded and independent of the ε∆’s

and rm,∆’s, this sum can be written as

ri,τ = αiτ + βirm,τ + σi
√
τεi,τ , (2)

where rm,τ is the change in the systematic risk factor over τ , and each of the constants has the same

attributes as stated in the Null Hypothesis. εi,τ is an idiosyncratic mean-zero shock with variance one

and uncorrelated with rm,τ . It is instructive to make a connection with the standard asset pricing

literature that commonly assumes a simple log-normal structure.13 Suppose that one identifies rm,τ

with the log of excess capital gains on some benchmark portfolio. Then in a standard setting, as derived

in Appendix A.2, αi can be decomposed into the following constituents.

αi = −σ
2
i

2
+ βi

(
1− βi

)σ2
m

2
+
(
βiµm − µi

)
+ `i,

where µm and µi are the the income rates generated by, respectively, the benchmark portfolio and the

property, σm is the price volatility of the benchmark portfolio, and `i is a liquidity premium denoting

a return component that can only be generated in an imperfect market where deviations from the

law of one price are hard to exploit. If (2) referred to a standard CAPM equation for simple total

returns, αi would be zero. The
σ2
i

2 is a Jensen’s inequality adjustment to the idiosyncratic (εi,τ ) shock

and is required because (2) employs log-returns of price appreciation rather than simple total returns.

The component proportional to βi is likewise a Jensen’s adjustment term to the benchmark log-return

contribution, and compensates for shocks to the benchmark portfolio. The difference between income

13See Campbell, Lo, and MacKinlay (1997) for a more complete review. Empirically estimating Equation 2, which may be
viewed as a cross-sectional rather than a time-series decomposition of return attributes, has parallels in the labor economics
literature (see Benzoni and Chyruk, 2015).
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rates would be absent if (2) were to be stated using the log of total returns and appears because ri,τ

and rm,τ are capital gain returns defined net of income.

Consider averaging across αi’s. If rm,τ is a property market benchmark (a weighted average return

across properties), the average beta should be close to one, and the average of βiµm − µi should be

zero. If the βi’s are not too skewed, the average of βi
(
1− βi

)
would be negative. Further assuming the

average of `i is zero, implies a negative average αi (approximately equal to the average of the −σ
2
i

2 ’s).14

For a property purchased at date t and sold at t+τ , it is possible to observe ri,τ , τ and rm,τ . Under the

null, εi,τ is unrelated across properties and independent of τ . Thus each property’s holding period return

from a repeat transaction is an independent random sampling from a standardized random variable (i.e.,

εi,τ ) and the distribution of property-specific coefficients (αi, βi and σi). The corresponding empirical

model for the property return over a holding period of τ can be rewritten as r̃ = α̃τ + β̃rm,τ + σ
√
τ ε̃,

where the index i from equation (2) corresponds to a single realization from the distribution of α̃, β̃,

and σε̃.15 Importantly, under the Null, after controlling for the benchmark contribution, both mean

and variance of returns should vanish with the holding period. Appendix A.2 demonstrates that is true

even for returns expressed gross of the systematic benchmark return and/or asset income.

To capture deviations from scaling with the holding period in both mean and variance (as observed

in the simple analysis of Section 2.2), I add a random atemporal term, α̃0 to r̃. To minimize collinearity

in the regression specification to follow, I normalize the resulting equation by
√
τ and then add an

intercept term, α1, to the normalized formulation. This results in

r̃√
τ

=
α̃0√
τ

+ α1 + α̃
√
τ + β̃

rm,τ√
τ

+ σε̃,

where it bears emphasizing that α̃0 and α1 are zero under the null. Further separating the expected

values of the random coefficients above by setting α̃0 ≡ α0 + ε̃0, α̃ ≡ α+ ε̃, and β̃ ≡ β + ε̃β , yields

r̃√
τ

= α0
1√
τ

+ α1 + α
√
τ + β

rm,τ√
τ

+
(
ε̃0

1√
τ

+ ε̃
√
τ + ε̃β

rm,τ√
τ

+ σε̃
)
. (3)

14A zero average `i is consistent with assuming that the aggregated property market liquidity premium is incorporated into
the property market benchmark.

15Here, the residual ε̃ is redefined to absorb variations in σi.
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Under the null, ε̃ and the ε̃’s are uncorrelated with rm,τ and τ , rendering (3) a regression equation

with heteroskedastic residuals. Appendix A.3 describes a four-stage OLS procedure for estimating the

coefficients and variance components in (3). Care is taken to control for the significant contributions of

year fixed effects to α and σ because these may lead to spurious rejections of the null (e.g., if large τ

properties are predominantly held during years of low volatility as compared with small τ properties).

I also exclude properties with holding periods less than one year. This is consistent with how the

NCREIF calculates its NPI index and is done out of concern that very short holding periods often

correspond to portfolio acquisitions in which the acquirer quickly sells “undesirable” properties out of

the portfolio. In such cases, there may not be an objective purchase price for the undesirable property

because the acquirer may potentially allocate it an arbitrary purchase price (and therefore an arbitrary

price appreciation). The results are qualitatively unchanged if one includes these properties.

Table 4: The table reports estimates of β, α, α0, α1, σ
2 and σ2

0 from the regression r̃√
τ

= α0
1√
τ

+ α1 + α
√
τ +

β
rm,τ√
τ

+
(
ε̃0

1√
τ

+ σε̃
)

, where r̃ is a property holding period return, τ is the holding period, rm,τ is the NPI index

return for the corresponding property type over the holding period, ε̃0 is a residual with variance σ2
0 , and ε̃ is a

residual with variance one. The procedure for the estimation , detailed in Appendix A.3, controls for year fixed

effects in α and σ2. The second and fifth columns report the baseline estimation using price appreciation returns

for the property as calculated in Eq. (1), and the NPI property-type specific price appreciation return index for

rm,τ (capital expenditures are incorporated into the calculation of both return series). Under the conventional asset

pricing null, in which average returns scale with the holding period, α0, α1 and σ2
0 should be zero. The third and

last columns report estimates when income is incorporated into the return series. The penultimate row reports the

probability that the stated parameters are unchanged relative to their baseline estimates.

Baseline incl. income Baseline incl. income
β 0.997*** 0.9453*** σ2 0.0085*** 0.0032**

(0.0610) (0.0603) (0.0014) (0.0011)

α 0.005 0.0045 σ2
0 0.0326*** 0.0352***

(0.008191) (0.0092) (0.00445) (0.0038)

α0 0.201*** 0.156***
(0.0383) (0.0427)

α1 -0.126*** -0.0967*
(0.008191) (0.043)

Prb no change in Prb no change
β, α & α1 0.1399 in σ2 <1E-6
Observations 4233 4224 4233 4224

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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For each property I use the corresponding type-specific NPI index returns in excess of the three-

month treasury bill to compute a proxy for the systematic factor, r̃m,τ , over the corresponding holding

period. The second and fifth columns of Table 4 report coefficient estimates in the baseline case, which

applies to price appreciation as calculated in Eq. (1). The average baseline β and α are very close to

one and zero, respectively. The atemporal α0, however, is economically very large, positive, and highly

significant. A time-dependent decline in average idiosyncratic returns is captured by a negative, large,

and significant α1 coefficient. Under the null, α0 and α1 should be zero and this is solidly rejected by

the data. The various contributions to average returns for a one-year holding period sum to roughly 8%,

which is comparable to the simple one-year mean returns in Table 3. The GLS intercept estimate in the

top row of Table 3 is likewise comparable with the estimate of α0. The variance component estimates

in the penultimate column of Table 4 indicate an annualized idiosyncratic diffusion variance of 0.0085,

corresponding to an annualized idiosyncratic volatility of roughly 9% and representing about 85% of the

total diffusion variance in price appreciation.16 The atemporal variance component, σ2
0 = VAR[ε̃0], is

more than three times as large as the diffusion component and statistically comparable with the simple

GLS estimate in Table 3 (third row). This too is a rejection of the null, which asserts that variance

scales with holding period, and confirms the conclusions of the simple analysis in Table 3. Random

variations in property α’s and β’s (corresponding to ε̃ and ε̃β , and reported in Table A-III of Appendix

A.3) are not significantly different from zero and are omitted from Table 4.

The third and last columns in Table 4 report the analysis when income is included in the property

returns calculation and their associated market indices. The key results are qualitatively unchanged.

The penultimate row reports a probability of 14% that the estimates of α, β and α1 differ by chance

from those in the baseline case. Although the atemporal variance does not significantly change when

including income, the diffusion variance estimate, σ2, significantly declines relative to the baseline case.

This is likely because income (which is reinvested at prevailing LIBOR rates) is less volatile than prices,

and the impact of the reinvestment strategy is more pronounced for long-duration returns. Regardless,

the exclusion of income does not appear to be a factor in the rejection of the null and, as in the baseline

case, the remaining analysis will exclude it.

16The total diffusion variance is calculated by estimating the specification without a benchmark return. Consistent with
the view that it is transactional and idiosyncratic, the estimate of σ2

0 is insensitive to inclusion of the benchmark return.
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Summarizing, deviations from RWD in the form of atemporal variance and alpha are large and hold

across various specifications and controls. Estimates of the atemporal variance are consistently around

3% and several times larger than estimates of the idiosyncratic annual diffusion variance. Likewise, the

atemporal alpha is consistently estimated at double digit figures (in percentage points).

2.4 Robustness and evidence of a transactional source

The analysis reported in this section is qualitatively robust to various alternative specifications, such

as: Excluding properties purchased before 1997, including non-NPI properties, using only non-NPI

properties, including properties with holding period less than one year, and removing the constraint

that the purchase date must not lag the initial reporting date for the property by more than a quarter.

Details can be found in Appendix A.4.

When repeating the exercise of Subsection 2.3 with matched REIT returns substituted for property

returns, the results are consistent with the Null, suggesting that the phenomenon is specific to how

real estate is traded. Alternatively, when one randomly matches the return of a single property held

over consecutive periods ∆1 and ∆2 with the compounded returns from two properties, one of which

was held over ∆1 and the other over ∆2, the return variance of the single property is lower than the

variance of the compounded returns from the two matched properties by essentially the estimate of σ2
0

from Table 4. Because the holding periods of the two strategies coincide, the only material difference

between the two returns is that the latter involves an additional two-way transaction (i.e., purchase and

sale). These exercises suggest that the anomalous return behavior stems from transactional frictions.

External validity for the findings of this section is documented for other highly illiquid asset classes,

such as residential real estate and individual private equity deals. In nearly all studies, atemporal

variance and alpha are attributed to unobserved investment, dismissed as a curiosity, or noted but

not investigated further. For instance, Case and Shiller (1987) and Goetzmann (1993) document an

anomalously large variance for short-term residential housing repeat transaction returns, while Abra-

ham and Schauman (1991) additionally detects nonlinearity in the variance growth against holding

periods. Goetzmann and Spiegel (1995) attribute the findings to missing data on renovations (i.e., cap-

ital expenditures), and model it by adding a jump component with positive mean to explain holding
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period returns. In the context of private equity buyout deals, Axelson, Sorensen, and Stromberg (2015)

document a significant intercept to both variance and expected return components as functions of a

deal’s holding period. Likewise, Lopez-de Silanes, Phalippou, and Gottschalg (2015) document that

private equity average holding-period returns are not proportional to the holding period. A common

feature of these different asset markets is the presence of (sometimes severe) illiquidity.

By incorporating CapEx into the calculation of holding period returns, I am able to reject interim

investment as the source of the anomalous return behavior.17 In contemporaneous and highly com-

plementary work, Giacoletti (2017) includes proxies for home improvement expenditures in his return

calculations and continues to find that holding period returns deviate from the RWD prediction.18

Theoretically, it is possible that property prices follow a RWD process but that the repeat sales data

suffers from systematic selection bias that arises because purchase and sale decisions depend on the return

distribution (i.e., τ and ε̃ are correlated in Eq. (3)). One simple possibility is that institutions prefer to

hold riskier assets for shorter periods of time, thus mechanically creating a negative correlation between

holding period and property risk. Another is that the option to sell a property is exercised contingent on

individual property performance. For instance, if properties are only sold if they underperform relative

to some benchmark, then one might find a relationship between risk-adjusted return characteristics and

the holding period. Alternatively, the anomalous atemporal alpha may result from a disposition effect

in which investors are eager to realize gains but reluctant to do so for losses. Appendix A.5 examines

and provides evidence against these alternative explanations.

3 A model of holding-period returns for illiquid assets

The robustness exercises reported in Section 2.4 suggest a transactional source for the holding period

return anomalies. Commercial real estate assets are highly illiquid, taking months to transact, and

there is little possibility of systematically exploiting the documented anomalous short-term returns. A

17Peng (2016) also includes CapEx in his calculations of holding period commercial property returns and notes that the
variance of idiosyncratic return does not strongly depend on the holding period. He does not delve into the possible reasons
for this nor consider the implications for his assumption of a RWD process.

18Perhaps because he uses a local index to control for systematic price variation, Giacoletti (2017) finds that nearly all of
the idiosyncratic risk is atemporal. My sample size of national CRE properties is a small fraction of his residential data, which
limits use of a more granular index.
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natural conjecture is that illiquidity borne of market frictions may help explain the peculiar properties

of observed holding period returns. Search and matching models have been extensively used in the

literature to shed light on the dynamics of and relationships between aggregate quantities in illiquid

markets. It is therefore sensible to look to such a model for an explanation of asset-level return behavior.

3.1 Model details

Time is discrete and there are N infinitely-lived income-producing properties. An investor’s valuation

type is defined to be an element of an index set A, and each property is held and managed by some

investor of type a ∈ A. At date t + 1, a property owned by an investor of type a will pay income

d̃t+1 = dte
(µt−σ

2

2 )+σε̃t+1 , where dt is the property’s income in the previous period, ε̃t+1 is a standard

normally distributed and serially uncorrelated random variable, and the volatility σ is constant. The

Jensen’s Inequality term, −σ
2

2 ensures that Et[
d̃t+1

dt
] = eµt . The drift, µt, a Markov process to be

specified soon, is the same across all properties and is independent of ε̃t′ for any t′. Thus, µt may be

interpreted as a macro state, and assumed to be specified by an index set, S. If at date t the growth

state is s ∈ S then I abuse notation somewhat in referring to the corresponding growth rate as µs. I

assume that ε̃t+1 is identically distributed across properties. Later, I will also assume that ε̃t+1 can

be decomposed into an idiosyncratic and a common shock for each property. To avoid burdensome

notation, I suppress reference to any specific property.

For trade to take place, there must be gains from trade to all parties and, therefore, heterogeneity

in private valuations. This is achieved here by assuming that an investor of type a ∈ A discounts next

period’s expected income and private property value by a factor e−ra,s , which varies across investors and

may depend on the macro state. Although this approach is chosen for its tractability, cross-sectional

heterogeneity in investors’ discount rates may be viewed as a reduced-form proxy for the effects of

institutional liquidity and capital constraints, individual managerial beliefs and/or preferences, skill,

unspecified portfolio effects or hedging needs, fiduciary contractual constraints, and agency concerns.

The sequence of events each period is depicted in Figure 1 and proceeds as follows: Income is first

distributed to each property’s owner. The macro state then transitions, followed by possible changes

to individual investor types. Next, each property’s distress status is determined and this is followed by
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a match with a prospective buyer. If a transaction is suitable for both parties, property ownership is

transferred. At the beginning of the next period, the sequence repeats.

t+1 t+2

Property 
owned by 
type a

Owner receives income

௧ାଵ ௧
ఓೞି 

ఙమ

ଶ
ା ఙఢ෤೟శభ

Owner receives 
offer from type a’ 
drawn from ௎

Offer rejected 
or accepted & 
ownership is 
transferred

Macro state 
transitions to s’. 
Owner’s type 
transitions to . 
Property distress 
status determined.

Macro state is s. 
Valuation type a (ex-
dividend and post-
transition) calculates 
the value of property 
ownership ( ௧,௔,௦) using 
discount factor ି௥ೌ ,ೞ .

Fig. 1: Time line representing the sequence of events between dates t + 1 and t + 2. This is the relevant
time line for an ex-dividend valuation of the property between dates t and t + 1 by an investor or owner
of type a in state s (post-transition).

States transition according to the Markov transition matrix, ΠS , assumed to be regular to guarantee

mean reversion. Note that if private values are heterogeneous but do not change, then eventually all

properties would be owned by the investors with the lowest discount rate. This is avoided by assuming

that individual types also transition according to a regular Markov matrix ΠA(s), which can depend on

the prevailing macro state, say s, but is otherwise applied independently across investors. I employ the

convention that the incumbent state corresponds to the row index of ΠS , and similar for ΠA(s).

After transitioning from state s to s′, a property may enter into “distress” with probability ρdist(s),

in which case it is sold at a distressed price of Qdist(s) × dt to the next bidder.19 This captures the

extreme left tail of transactions observed in the data. Each owner of a non-distressed property receives

a purchase offer from some randomly chosen investor and must decide whether or not to sell at a cost,

c × dt, c ≥ 0, assumed for analytic convenience to be proportional to the property’s income. Offers

are sampled from the unconditional distribution of valuation types, denoted as πU , conditioning on the

19It is assumed that distressed prices are below the lowest private valuation.
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new state, s′.20 This is consistent with absence of search costs or explicit constraints on the number of

properties that an investor may hold.21 In particular, the ratio of investors to properties is immaterial.

A sale at date t + 1, when the macro growth state is s′, takes place between an owner of type â

and investor of type a′ if and only if the owner’s valuation of the property, pt+1,â,s′ , is smaller than the

investor’s valuation, pt+1,a′,s′ , less cdt+1. If the difference between bidder’s and owner’s private values

exceeds the transaction costs, bargaining ensues and the seller receives a random fraction, λ̃ ∈ [0, 1]

with mean λ̄, of the gains from trade. Thus, when a sale takes place the transaction price net of costs

is pt+1,â,s′ + λ̃
{
pt+1,a′,s′ − pt+1,â,s′ − cdt+1

}+

(where {y}+ = max{0, y}). I assume that λ̃ is identically

and independently distributed across time and buyers/sellers, and independent of ε̃t+1 and the Markov

chain process underlying macro or valuation type transitions.

Combining the sequence of events outlined above, the ex-dividend and post-transition private value

of a non-distressed property owner of type a in macro state s is calculated as

pt,a,s = e−ra,sE

[
d̃t+1 + (1− ρ̃dist(s′))

(
p̃t+1,â,s′ + λ̃

{
p̃t+1,a′,s′ − p̃t+1,â,s′ − cd̃t+1

}+)
+ ρ̃dist(s

′)d̃t+1Q̃dist(s
′)

]
, (4)

where the tilde denotes random variables. The owner’s and bidder’s private values at date t + 1 and

macro state s′, ex-dividend and post transition, are respectively denoted by p̃t+1,â,s′ and p̃t+1,a′,s′ . The

last term in the expectation corresponds to the payoffs from a distressed sale. In words, the owner’s

valuation equals the expected continuation value of holding the income producing property plus the

option value of selling (at a cost) to a prospective buyer, both discounted for time and the likelihood of

distress, plus the present value of a potential distressed sale.

Definition. An equilibrium is a positive and finite random variable pt,a,s that solves (4) for every

20πU is defined to be any one of the identical rows resulting from the limit transition matrix, limn→∞Πn
SA, where

(ΠSA)s,a;s′,a′ = (ΠS)ss′(ΠA(s′))aa′ . Regularity and the so-called Fundamental Theorem of Markov Chains ensures exis-
tence and uniqueness of πU in this limit. Conditioning on s′ amounts to restricting attention to elements of πU corresponding
to s′ (normalized so that they sum to one).

21Capital constraints are instead implicit in the variation across discount rates.
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a ∈ A and s ∈ S.

If A is a singleton set, then valuations are homogeneous across investors and pt,s = e−rsE[d̃t+1 +

pt+1,s′ ] defines the equilibrium in the absence of distress. Thus, if all investors are identical then prices

are set as if the market is frictionless and each investor discounts cash flow at a (macro) state-dependent

rate rs. Liquidity has no role to play in such a market because there are no gains from trade.

The frictions in this model consist of the cost of transacting a sale and, more importantly, the limited

trading opportunities — each period the counterparty is at most a single potential buyer rather than a

market of potential buyers. The assumption of limited trading opportunities is particularly fitting in the

context of real estate, but may be applicable to other broker-mediated (rather than dealer-mediated)

markets.22 It is instructive to consider a situation where the owner faces multiple bidders, each arriving

with independent probability and possessing different valuation and bargaining power. In this case, and

temporarily suppressing the macro-state dependence or distressed sales, (4) becomes

pt,a = e−raE
[
d̃t+1 + p̃t+1,â + max

{
0, λ̃
(
p̃t+1,a′ − p̃t+1,â − cd̃t+1

)
λ̃′
(
p̃t+1,a′′ − p̃t+1,â − cd̃t+1

)
λ̃′′
(
p̃t+1,a′′′ − p̃t+1,â − cd̃t+1

)
, . . .

}]
.

If c = 0, then as the number of independent bidders grows the equilibrium will approach one where

only the investors with highest private values and least bargaining power will acquire the asset, and the

property price will reflect their valuation. This can be viewed as the frictionless limit in which the asset

is always held by those who derive the most utility from it. If c > 0, then transactions will still only

occur at the highest private valuation, but owners’ private values will lie between this valuation and a

lower bound determined by c.

To proceed with the analysis, I conjecture an equilibrium private valuation (ex-dividend and post

22 Real estate properties under contract for purchase are subject to a due diligence period, typically lasting several weeks
or months, during which the price can be renegotiated by the prospective buyer and no other offer may be entertained by the
seller. Professionals refer to this as “tying up the property”. Between the due diligence period and contracted closing date, a
period that can also last several weeks to several months, the buyer may back out by forfeiting a deposit of “earnest money”
(usually a small percentage of the contract purchase price).
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transition) of

pt,a,s = dtQa,s.

Define ηa,s ≡ era,s−µs to be the growth-adjusted private capitalization factor of investor a in state s.

Then from (4) and the model assumptions, Qa,s must solve the following system of piece-wise linear

equations for every a ∈ A and s ∈ S:

ηa,sQa,s = 1 +
∑
a′∈A
s′∈S

(ΠS)ss′(ΠA(s′))aa′(1− ρdist(s′))
(
Qa′,s′ + λ̄

∑
b∈A

πUb (s′)
{
Qb,s′ −Qa′,s′ − c

}+)

+
∑
s′∈S

(ΠS)ss′ρdist(s
′)Qdist(s

′), (5)

where λ̄ is the mean of the random bargaining variable, λ̃. If ρdist(s) = 0 and ηa,s ≡ er−µ across macro

and type states then, assuming r−µ > 0, an equilibrium solution is given by Qa = (η−1)−1 ≈ (r−µ)−1

— a simple growing annuity factor. Sufficient conditions for the existence of a unique equilibrium are

provided by the following application of a famous result in Blackwell (1965):

Theorem 1. Let ηa,s > 1 for every (a, s) ∈ A× S. Then (5) has a unique solution.

Proof. See Appendix B

A transaction takes place at date t if and only if an arriving buyer’s private value less the transaction

cost exceeds the private value of the seller. This is true if and only if Qa′,s − Qa,s ≥ c, where Qa′,s

corresponds to the valuation of the prospective investor in state s, while Qa,s to that of the incumbent

owner.23 Thus, the realization of a transaction is a random variable whose distribution depends on the

incumbent owner type. If a trade occurs between an owner of type a and an investor of type a′ at date

t and state s, then the observed transaction price is

pt(a, a
′, s) = dt

(
Qa,s + λ̃

(
Qa′,s −Qa,s − c

))
s.t. Qa′,s −Qa,s ≥ c.

This expression is a function of property market characteristics as well as the identities of the seller

23I assume that the buyer pays all transaction costs in a distressed sale. Here, and elsewhere in the ensuing equations,
if the property is in distress, then the corresponding expression for the transaction price is obtained by setting the owner’s
valuation and bargaining power to Qdist(s) and zero, respectively.
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and bidder, and their relative bargaining power. In other words, as a function of property market

information alone, the property transaction price at date t is not a number but a distribution (i.e., it

can take on multiple values). If one interprets an appraisal as an average over potential transaction

prices, then one should observe transaction dispersion around appraisals.

3.2 Holding Period Returns

Consider a property that at date t and state s is purchased from some owner of type o ∈ A by an

investor of type a ∈ A. Suppose the property is held until date t + τ , by which point the economy

transitions to state s′ while current owner has transitioned to type â and sells to a buyer of type b ∈ A.

Then the observed price appreciation return corresponding to the repeat transaction is:

R̃t,τ (o, a, s, â, b, s′) =
pt+τ (â, b, s′)

pt(o, a, s)
=
Qâ,s′ + λ̃′

(
Qb,s′ −Qâ,s′ − c

)
Qo,s + c+ λ̃

(
Qa,s −Qo,s − c

) d̃t+τ
dt

=
Qâ,s′ + λ̃′

(
Qb,s′ −Qâ,s′ − c

)
Qo,s + c+ λ̃

(
Qa,s −Qo,s − c

) eτ−1∑
j=0

(µs(t+j)−σ
2

2 )+σ
√
τñ

,

where s(t+ j) is the growth state of the economy at date t+ j, ñ = 1√
τ

τ∑
j=1

ε̃t+j is a standard normally

distributed random variable, and where λ̃ and λ̃′ are iid. Note that the purchase price paid is gross of

costs but the selling price received is net of costs (i.e., in the presence of transaction costs a buyer will

pay more than the seller receives). In a frictionless setting, c = 0 and there is only one valuation type,

so R̃t,τ (o, a, s, â, b, s′) = exp
( τ−1∑
j=0

(µs(t+j)− σ2

2 )+σ
√
τ ñ
)

. This is the standard (time-varying) geometric

random walk with drift (RWD) result in which the identities and private values of the transactors are

immaterial in that there is no dependence on o, a, â or b. In the presence of limited trading opportunities,

R̃t,τ (o, a, s, â, b, s′) depends not only on property-specific characteristics between t and t+ τ but also on

the attributes of the investors involved in the repeat transaction. This feature is what drives the joint

hypothesis problem: One may not be able to infer the property market parameters from repeat sales

without also modeling (implicitly or explicitly) transaction dynamics.
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The logarithm of the holding period return separates into four sources of risk:

ln R̃t,τ (o, a, s, â, b, s′) = ln
(
Qâ,s′ + λ̃′

(
Qb,s′ −Qâ,s′ − c

))
︸ ︷︷ ︸

Selling shock

− ln
(
Qo,s + c+ λ̃

(
Qa,s −Qo,s − c

))
︸ ︷︷ ︸

Purchasing shock

(6)

+ σ
√
τ ñ︸ ︷︷ ︸

Income shock

+

τ−1∑
j=0

(
µs(t+j)︸ ︷︷ ︸

Macro risk

−σ
2

2

)
.

In equation (6), both the purchasing and selling shocks are idiosyncratic to the property. Using the

subscript i to refer to a specific property, the more conventional income shock component can be further

decomposed into an idiosyncratic and a systematic part as

σñi = σM ñM + σI ñI,i,

where ñM is a systematic shock common to all properties, ñI,i is specific to property i, and σ2
M+σ2

I = σ2.

The risk-adjusted, or idiosyncratic, distribution of property holding returns can therefore be written as

ln R̃It,τ (o, a, s, â, b, s′) = ln

(
Qâ,s′ + λ̃′

(
Qb,s′ −Qâ,s′ − c

)
Qo,s + c+ λ̃

(
Qa,s −Qo,s − c

))︸ ︷︷ ︸
Transaction risk

+σI
√
τ ñI,i −

σ2
I

2
τ, (7)

where it is assumed that, over the holding period, a well-diversified portfolio or index of properties

will exhibit an expected rate of log-price appreciation of
τ−1∑
j=0

(µs(t+j) −
σ2
M

2 ), so that risk-adjustment

eliminates the macro growth component from (6).

Equation (7) describes the main object of interest in Section 2. In a perfectly efficient market, only

the last two terms contribute to Eq. (2), and only the Jensen’s term contributes to αi. The idiosyncratic

variance of the shock component, σI
√
τ ñI,i, grows linearly with the holding period. Thus, in the limit

of perfect liquidity, the model reduces to the standard RWD (or diffusion) price dynamics. The first

term, corresponding to transaction risk, subsumes the return impact of selling and purchasing shocks

which, in this model, arise from search frictions and transaction costs. Atemporal alpha and variance

arise from the mean and variance of transaction risk.

To characterize the transactional return attributes corresponding to the purchase and sale shocks,
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one must characterize their joint distribution. It should be immediately clear that selection plays a

role in determining this joint distribution. For instance, in the presence of transaction costs, the lowest

valuation type would never purchase the asset and the highest valuation type would never sell.

A steady state is characterized by a distribution of ownership that is not expected to change. Let

πt,τ (o, a, s, â, b, s′) be the probability of realizing the following path in a generic property’s history. The

property is sold to an investor of type a at date t by an owner of type o drawn from the steady state

distribution of owners, when the macro state is s. The property is then held without being sold (despite

the arrival of offers) until the new owner transitions to type â at date t+τ and state s′. Following this last

type transition the owner receives a satisfactory bid from an investor of type b and the property is sold.

Observing a holding period return is tantamount to observing one of these paths. Appendix B derives

πt,τ (o, a, s, â, b, s′) which, given the model parameters, can be used to calculate the joint distribution

of the purchasing and selling shocks in (7). Other key steady state observables, useful in calibrating

the model to data, are calculated in Appendix B. These include the average property turnover rates,

proportional transaction costs, transaction cap rates, and the distribution of holding periods.

3.3 Qualitative Model Predictions

Transaction risk in Eq. (7) contributes to the holding period return volatility, even if the holding period

is short. This is a simple implication of nearly all random matching and bargaining models, including

those set in continuous time. Sufficient criteria are that expected gains from trade are finite even as the

holding period vanishes, and that bargaining outcomes are random and uncorrelated.

There are various ways by which the model can produce negative average long holding period returns,

as observed in Table 3 and implied by the estimates in Table 4. Suppose, for instance, that the arrival

rate of high bids is lower than the rate at which valuations mean revert. Then, in the steady state, the

average valuation of owners who have not managed to sell for a long time will tend to decline relative to

the high average valuation of newly purchasing investors. This, together with the negative contribution

from Jensen’s term in Eq. (7), can lead to E
[

ln R̃It,τ (o, a, s, â, b, s′)
]
< 0 for large τ .

More challenging to explain is the positive average return for short holding periods. To see the

problem, consider the case where there is no persistence in private values and ignore variations in the
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macro state (which should not matter for average idiosyncratic returns). In this case, each row of ΠA(s)

is identical, implying that selling and buying shocks are unrelated at all horizons. If s = s′, the selling

shock component in (6) can be denoted as ln Ã and the purchasing shock contributes − ln
(
Ã′ + c

)
, where

Ã and Ã′ are identically and independently distributed.24 Because Ã′ + c first-degree stochastically

dominates Ã, it must be that E[ln Ã
Ã′+c

] ≤ 0 and E
[

ln R̃It,τ (o, a, s, â, b, s)
]
< 0 for any horizon.

While persistence appears necessary for atemporal alpha, it is not sufficient. To see this, suppose

that there are only two valuation types and c > 0. A purchase can only take place if the high valuation

type purchases from a low valuation type. A subsequent sale can only take place if the high valuation

type transitions to a low type and sells to another high type. Any repeat transaction consists of buying

high and selling low, leading to negative expected alphas in the observed transaction regardless of the

horizon. Thus, positive atemporal alpha requires the presence of intermediate valuation types.

To see how the combination of persistence and intermediate valuation types leads to positive average

returns in observed short-hold transactions, consider a situation with three highly persistent types,

QH > QM > QL. When an asset is first purchased at date t by a type a investor, the owner’s type

is highly unlikely to change in the next period. A sale at t + 1 by a type a = H will not be observed

because transaction costs preclude a sale to another investor with the same valuation. Thus a sale after

only one period of ownership is most likely to take place between a type M (who recently purchased

from a type L) and a bidder with type H. In other words, when types are persistent, a short holding

period is most likely to feature an initial purchase by an intermediate valuation type, followed by the

arrival of and sale to a new buyer with an even higher valuation. This repeat transaction links large

alphas with short holding periods, but the causality is reversed: The apparent “premium” reflects the

chance arrival of a high offer shortly after an initial purchase and represents the upside of a range of

outcomes. The downside is not observed because the property will be otherwise held longer. This

example demonstrates selection bias in transactions data and highlights a role for intermediate value

investors as property “flippers”. The presence of such intermediaries, and the profits that they make in

equilibrium, reflects information about structural illiquidity in the market, which is most pronounced

24The random variables Ã and Ã′ have the same distribution as Qo + λ̃′
(
Qa −Qo − c

)
conditional on

(
Qa −Qo − c

)
≥ 0.

If c = 0 then one obtains the Goetzmann (1993) and Case and Shiller (1987) setting in which holding period returns exhibit
two iid shocks (when the property is bought and subsequently sold).
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in short-term transactions.

3.4 Empirical validation of the Model Mechanisms

The previous subsection outlines how the existence of valuation dispersion and the presence of transi-

tional investors can explain the return anomalies. Here, to provide empirical validation, I investigate

proxies for these mechanisms.

For their NPI-qualifying properties, NCREIF members are required to report quarterly appraisal

values where at least once every three years the appraisal is done by an independent (external) appraiser.

In practice, roughly one third of the market values reported in the cleaned data (used in this study)

correspond to external appraisals. If valuations differ across market participants, then an external

appraiser, a willing buyer, and a willing seller will generally have different views of the property’s value.

This would be expressed as variation in the ratio of a sale price and an appraisal that closely precedes

the sale.25 Following this intuition, I first calculate the Sale-Appraisal Ratio as the property sale price

divided by the (externally) appraised market value one quarter prior to the sale (available for 2,478

properties). The distribution of this ratio is fat-tailed, right-skewed, and its standard deviation is 12.0%

(far exceeding dispersion in transaction costs). The median and mean of the ratio are 1.000 and 1.011,

respectively, suggesting that appraisals are relatively unbiased measures. In each year, I then construct

a “disagreement measure”, Disapp, equal to the variance of the Sale-Appraisal Ratio in that year. I do

this annually because calculating a quarterly disagreement measure would exhibit too much noise in the

first half of the sample when there are fewer transactions per quarter.

I hand-collect data from the Urban Land Institute’s Emerging Trends in Real Estate, an annual

survey of CRE stakeholders available from 2002. The survey consistently reports the distribution of

buy/hold/sell views from its respondents for the major CRE asset categories and some subcategories

in the overall U.S. property market.26 The correlation between buy and sell recommendations is large

in magnitude and negative (−0.75). I use Diset, the difference between the proportion of sell and buy

recommendations divided by their sum, to proxy for the spread in private values. The idea is that, in

25Buyers, sellers, and financing stakeholders (e.g., banks, JV partners) will undertake their own appraisals. It is unlikely
that appraisals solicited by different stakeholders would be performed by the same appraiser.

26An example is available at https://goo.gl/D9U8G4.
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equilibrium, a high level of valuation disagreement across property owners can only be sustained if there

are very few buyers able to take advantage of the discrepancy. Separately, I consider Transet, defined as

one minus the proportion of hold recommendations, to proxy for the depth of the market and extent of

transitional investor activity. An unusually high number of hold recommendations corresponds to a thin

market and one where transitional investors are less likely to prosper. The two measures are matched to

the return sample (by year and property subtype). It is noteworthy that the correlation between Diset

and Transet is less than 10%.

A property owned through a joint venture (JV) partnership reflects a degree of consensus valuation

among the partners.27 Thus, on average, the effective JV private value of a property is less likely to

be extreme. Consistent with that idea, JVs may be viewed as transitional investors in the model (at

least while the JV is in place). Only 83% of JV properties enter the (cleaned) NCREIF dataset as JVs,

and about 91% of properties that were owned as a JV at some point are sold as a JV. While 2,258

properties are JV-owned at some point, some move in and out of JV ownership (there are 2,750 spells of

contiguous periods during which the ownership is classified as JV). JV spells terminated by a property

sale are significantly shorter than the unconditional distribution of holding periods documented Table 1.

Consistent with that, Table A-VI in Appendix A reports that a JV property is significantly more likely

to be sold. When a property is purchased as a JV, the average purchase price as a proportion of next

period’s (independent) appraisal is significantly lower by 2.8% than non-JV purchases. By contrast,

when a JV sells, there is no significant discount relative to non-JV sales. This suggests that JVs behave

as transitional investors who purchase if the price is right and sell in the same market, and with the

same market outcomes, as other sellers. The only difference with other sellers is that JVs are more open

to disposition soon after a purchase. This seems to fit well the description of the intermediate value

investor that is key to the model mechanics. Correspondingly, I use the proportion of properties owned

by a JV, defined to be TransJV, as another measure for the presence of transitional investors.

The distributional properties of the proxies are reported in Table B-I of Appendix B. To formally

test for a relationship between the proxies and anomalous return moments, one can interact the proxies

with α0 and σ2
0 in a repeat of the analysis in Table 4. I de-mean and standardize the proxies using their

27JV partnerships tend to have buy-sell agreements allowing each partner to force a disposition if the partners disagree on
strategy or value.
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sample means and standard deviations, to more easily interpret the regression coefficients, and reports

the results in Table 5.

Table 5: The table reports estimates of regression parameters in Table 4 including interaction terms for α0 and σ2
0

using proxies for investor disagreement (“Dis”) and the presence of transitional investors (“Trans”) — see Section
3.4 for an explanation of the proxies. Interaction variables are standardized (denoted by “std(·)”) to facilitate
interpretation. The penultimate row reports the probability that the stated parameters are unchanged relative to
their baseline estimates.

(1) (2) (3) (1) (2) (3)
β 1.0141*** 1.0750*** 0.9731*** σ2 0.0082** 0.0094* 0.0087***

(0.0605) (0.1345) (0.0595) (0.0029) (0.0045) (0.0014)

α -0.0055 -0.0466** 0.0064
(0.0111) (0.0161) (0.0083)

α0 0.1506*** 0.1559** 0.1995*** σ2
0 0.033*** 0.0397*** 0.0304***

(0.0401) (0.0584) (0.0386) (0.0043) (0.006) (0.0041)

std( Disapp) 0.018** 0.0054
(0.0057) (0.0032)

std( Diset) -0.0124 0.0081**
(0.0065) (0.0029)

std(Transet) 0.028*** -0.0021
(0.0068) (0.0031)

std(TransJV ) 0.0312*** 0.0039
(0.0048) (0.002)

α1 -0.0736 -0.0629 -0.1291***
(0.0377) (0.0577) (0.0361)

Prb no change in Prb no
β, α & α1 0.5595 0.0003 0.9145 change in σ2 0.917 0.8447 0.8799
Observations 3862 2159 4232 3862 2159 4232

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Both proxies for the presence of intermediate value investors are associated with positive atemporal

alpha, and both disagreement proxies are associated with positive atemporal variance. These interactions

are highly significant but for std(Disapp), which has a t-statistic of 1.69.28 The remaining coefficients

(β, α, α1, σ
2) mostly remain the same across the different specifications. The notable exception is the

regression with the survey-based proxies for which α is large and negative and α1 has the smallest

28I include the survey-based variables together in one regression because they share a common data source and time-period.
If one combines std(Disapp) and std(TransJV) in the same regression, the results are strengthened (i.e., std(Disapp) becomes
significantly and positively related to atemporal variance).
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magnitude relative to other specification. This could be because the time series panel for the survey

data is shorter by twenty years than the other panels, making it hard to disentangle the effects of α

from those of α1 (the correlation of the two estimates in the second specification is −79% ).

Appendix B similarly documents the impact of fund size and closed-end funds (CEFs) on the anoma-

lous return moments. Consistent with the hypothesis that larger investors seek more liquidity, the atem-

poral variance associated with smaller funds is significantly higher by 250 basis points. Likewise, CEF

managers may be viewed as skilled asset allocators with a limited holding horizon built into their con-

tract. Confirming that, I find that CEF properties are associated with a high atemporal alpha separate

from that observed for JVs. All of these results qualitatively hold when employing a simpler analysis,

along the lines of Table 3.

3.5 Comparison with Search Literature

Han and Strange (2015) comprehensively review the vast literature on search-based transactions in

real estate. Save for Fisher, Gatzlaff, Geltner, and Haurin (2003) which uses a heuristic rather than

an equilibrium search framework, research in this area has focused exclusively on residential housing.

Because such studies aim at understanding aggregated real estate market variables (e.g., supply, demand,

prices, turnover, etc.), less attention has been paid to matching the transaction process to data or gauging

the sensitivity of aggregate quantities (like repeat sales indices) to the transaction process. This paper

helps to bridge that gap.

Recent models generally employ either random or directed matching of counterparties, followed by

a “two-sided” transaction process.29 As with the model developed here, most random matching search

models feature heterogeneous private values and gains from trade that are randomly split between

buyer and seller (Krainer and LeRoy, 2002, is an exception). Atemporal transaction variance naturally

emerges from this. By contrast, directed search models do not typically allow for such transaction price

uncertainty (and atemporal variance) as they assume that sellers commit to listing prices (See Diaz and

29In random matching the counterparties meet through a process that does not condition on attributes of buyers or sellers.
In directed matching, at least one of the counterparties can take an action (e.g., commit to a listing price) that impacts
the conditional probability of being matched. Two-sided transactions refers to a process in which a buyer and seller, after
meeting, each have to solve a choice problem in order to determine whether to transact. In a one-sided transaction process,
the decision to transact is exogenously specified for one of the counterparties.
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Jerez, 2013; Albrecht, Gautier, and Vroman, 2016; Hedlund, 2016a,b; Garriga and Hedlund, 2017).

Existing models, however, cannot explain the atemporal alpha. Search models in the literature

generally employ one of two mechanisms to induce gains from trade in a given transaction.30 In the

first, conditioning on a match, a buyer and seller split a random match surplus determined only after

the match is consummated (E.g., Williams, 1995; Novy-Marx, 2009; Genesove and Han, 2012). In

the second mechanism, property owners become potential sellers only after receiving a memory-less

“disutility shock” to ownership (See Krainer, 2001; Krainer and LeRoy, 2002; Caplin and Leahy, 2011;

Head and Lloyd-Ellis, 2012; Diaz and Jerez, 2013; Ngai and Tenreyro, 2014; Head, Lloyd-Ellis, and Sun,

2014; McQuade, Guren, et al., 2015; Hedlund, 2016b,a; Garriga and Hedlund, 2017). Holding the state

of the economy constant, in the first mechanism there is no correlation between the owner’s valuation at

purchase and at sale, at any horizon. While in the second mechanism, a sale can only take place if the

owner’s valuation falls to a level that is independent of their valuation as a buyer. These assumptions

imply that average short term returns, and therefore atemporal alpha, cannot be positive. The model

I derive is therefore a unique contribution to the real estate literature.

Search is also prevalent in models of over the counter (OTC) markets (Duffie, Gârleanu, and Pedersen,

2005, 2007; Lagos and Rocheteau, 2009). These and related models employ a two-sided random matching

paradigm with iid type switching. Thus atemporal variance will typically be a feature of holding period

returns.31 As explained in Hugonnier, Lester, and Weill (2018), theirs is the only decentralized OTC

model that assumes more than two types of investors.

To the best of my knowledge only two models in the broader search literature, both contemporaneous

with this paper, feature the mechanisms required to deliver atemporal alpha and variance (random

matching and three or more persistent valuation types). Investors in the OTC model of Hugonnier,

Lester, and Weill (2018) are constrained to holding either one or no asset, which in equilibrium keeps

most high valuation investors out of the market. While this allows them to explain intermediation chains

in decentralized over the counter markets it may not result in an adequate description of institutional

30Two exceptions are Wheaton (1990) and Albrecht, Anderson, Smith, and Vroman (2007). The former only examines
aggregate variables rather than the specifics of individual transactions, and the latter does not feature repeat transactions
(sellers enter the market exogenously).

31In the presence of competitive dealers, through which all trade must be transacted, the transaction price is set irrespective
of private values thereby doing away with atemporal holding period variance.
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CRE markets where trading costs are high and intermediation chains rarely occur.32 In the art auction

market model of Lovo and Spaenjers (2018), atemporal variance arises because the number of auction

bidders is finite. Atemporal alpha arises because there are more than two persistent private valuation

types. The specific transaction mechanisms (in the models and in practice) are different between CRE

and art asset markets. This is also true of the structure of the underlying shocks to the economy and

to types. Conceptually, however, the model in Lovo and Spaenjers (2018) is very similar to mine.

4 Fitting the model to the data

To explore whether the model delivers a plausible quantitative description of observed return and trans-

action moments, I calibrate a boom and bust version of the model to NCREIF data. In calibrating, I

exclude closed-end fund properties from the data because they face contractual liquidation incentives

that depend on their holding periods.33 Appendix B.4 establishes that atemporal alpha and variance

are robust to the exclusion of closed-end fund assets and discusses how, relative to other institutional

owners, closed-end funds target different assets and asset management strategies.

4.1 Model parameters, data moments and calibration procedure

Model calibration choices are summarized below (Appendix C provides extensive details).

Model parameters To match the NCREIF panel, each period represents a quarter. I assume two

macro states, corresponding to an expanding/contracting real estate market. To calibrate these, I esti-

mate a two-state Markov switching model to the national NPI price appreciation index returns reported

by the NCREIF. The estimated smoothed probabilities identify two episodes of national property mar-

ket contractions between 1978 and 2017: One from 1990Q3 until 1994Q1, and one from 2008Q3 until

2010Q1.34 The probabilities of switching from expansion to contraction, and vice versa, are 0.015 and

32Hugonnier, Lester, and Weill (2018) predict that assets will typically drift up the “value” chain through intermediation.
In the NCREIF data, there is no significant relationship between the rank of a property’s purchase price relative to appraisal
and the subsequent rank of selling price relative to appraisal.

33Figure A-I(a) in Appendix A.4 illustrates the exceptionally low returns for holding periods of 8-10 years, much of which
stem from asset liquidations by closed-end funds, likely at or near the end of their term. Without explicitly including an
investor with horizon constraints it would be difficult for the model to fit to these specific data points.

34I identify a market expansion whenever the estimated smoothed probability of an expansionary state is greater than one
half (otherwise, the market is in contraction).
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0.097 per quarter. This fixes ΠS .

For ease of notation, I refer to the expansion state as s = exp and the contraction state as s = cnt.

Using the Sale-Appraisal ratio, introduced in Section 3.4, I define a distressed sale as a transaction below

two standard deviations of a recent appraisal.35 Applying this definition, I estimate distress probabilities

of ρdist(exp) = 0.0467% and ρdist(cnt) = 0.0924%. The corresponding discounted price-earning ratios

in the different regimes (i.e., the Qdist(s)’s) are left to freely vary subject to Qdist(cnt) ≤ Qdist(exp).

To give the model the best chance at capturing right-tail transactions, I set the number of types to 21.

The calculation of model statistics, is simplified by assuming that the bargaining power parameter, λ̃,

is one or zero with one half chance. Listing and bidding data, which I do not have, could shed more

light on the bargaining process.

The quarterly type transition matrix, ΠA(s), assumed symmetric about the middle investor type,

is akin to a discretized bounded Ornstein-Uhlenbeck process supplemented with a jump reversion to

the middle type. The diffusion “volatility” rate parameter (xs ≥ 0) controls the persistence of types

(decreasing xs increases persistence). Increasing the mean reversion strength (zs) increases the rate

at which types that are further away revert towards the middle. The “jump” reversion process shifts

any given type to the middle with probability ξs. The six type-transition parameters, together with

ΠS , also determine the unconditional distribution of types, πU (s) in each state.36 The growth-adjusted

capitalization factor, ηa,s = era,s−µs , is assumed to increase in a, and ηa,cnt − 1 is modeled as a (two-

parameter) log-normal distribution with quantiles defined by πUa (cnt). The ηa,exp’s are modeled similarly

but constrained so that in moving from an expansion to a contraction, after accounting for the drop in

income growth, type-specific discount rates (the ra,s’s) are weakly increasing. Overall, ten parameters are

employed in modeling the state-dependent distribution of ηa,s’s and their corresponding type transitions.

Transaction costs (c), idiosyncratic volatility (σI), together with the Qdist(s)’s, bring the number of free

parameters to 14.

35As discussed later, steep discounts relative to appraised values in the data are likely driven by liquidity events rather than
defaults. This makes it difficult to clearly identify “distress” and justifies the somewhat ad-hoc definition.

36Roughly, zs and ξs respectively determine the standard deviation and kurtosis of the unconditional distribution of types.
As will soon be explained, the jump also helps capture negative skewness in transaction prices.
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Data moments The free model parameters are varied to fit 31 data “moments” that I now describe.

I divide repeat sales capital gains data, calculated as in Eq. (1), into four categories based on whether

a property is bought/sold in an expansion or a contraction, and then exclude the cnt/cnt category

because it only contains six repeat sales. For the other three categories, I estimate idiosyncratic return

means and variances, netting out the market and year fixed-effects. For calibration, I use the mean and

variance estimates at horizons τ = {1, 5, 8}, resulting in 18 model moment restrictions.

Next, conditional on an expansion or a contraction, I estimate means for property turnover, propor-

tional transaction costs, transaction cap rates, and the proportion of purchased properties that are sold

within five years. These contribute eight additional moment restrictions. In the case of transaction cap

rates, I remove the observed secular trend over the sample period by subtracting the spread between the

one-year TBill and inflation. The latter can be viewed as a monetary policy instrument and is therefore

outside the model.

There are 2478 transactions preceded by independent appraisals within one quarter. These are

used to construct the Sale-Appraisal Ratio, described in Section 3.4. If, in the model, one associates

the appraised value with the average transaction property cap rate, then one can construct a model-

implied distribution of the Sale-Appraisal Ratio.37 The mean, variance, skewness, and kurtosis of this

distribution provide four additional calibration moments.

Lastly, I restrict the interpolated probability of an above-market offer arrival (during an expansion)

to be 22.5% per quarter, with a standard deviation tolerance of 2%. This is the only moment that

is not directly derived from data, and is adopted to ensure that, during an expansionary quarter, the

probability of a “fair market” offer within the next year is roughly between 50% and 75%, consistent

with recent CoStar reports (see https://prn.to/2X8AyuL).

4.2 Calibration results and comparison with the data

To calibrate, I minimize the sum of standardized squared deviations of model moments from their

empirical estimates. Details of the procedure and results of the calibration, as well as a sensitivity

analysis, are found in Appendix C. Two of the 14 model parameters are at their binding constraints

37Details are in Appendix C.2.
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(xcnt = 0 and Qdist(cnt) = Qdist(exp)), and a third, zcnt, has no influence when xcnt = 0. Thus, in

practice, only 11 parameters are meaningfully employed.

The type transition parameters are generally highly sensitive to the turnover moments, and vice

versa. Consistent with the qualitative analysis in Section 3.3, type-transition persistence significantly

impacts short-term alpha. Calibrated idiosyncratic diffusion volatility is modest at roughly 12% per

year, while transaction costs are roughly 2%-3% of property value. Both compare well with estimates

from the data. Not surprisingly, σ2
I is most sensitive to the variance of longer holding period returns

and c is most sensitive to transaction costs.

Table 6: Calibrated transaction statistics. The panel reports aggregate transaction statistics in property market
expansion and contraction states. Acquisition income to price ratios (cap rates) are adjusted by the spread between
one-year treasury rates and inflation to remove the secular trend in cap rates since the 1980’s. The column “data”
reports point estimates from the data while “sd” denotes the associated standard error. The column “model” reports
the corresponding calibrated model value.

Expansion State Contraction State
Statistic data sd model data sd model

Quarterly turnover (during. . . ) 0.025 0.004 0.024 0.009 0.01 0.009
Average proportional transaction costs (props sold in. . . ) 0.025 0.005 0.024 0.032 0.015 0.026
Average adjusted acq cap rate (props acquired in. . . ) 0.060 0.008 0.060 0.072 0.017 0.068
Fraction sold within 5 years (prop acquired in. . . ) 0.203 0.078 0.274 0.335 0.165 0.357

The fit to the data moments is generally very good. The worst fitting model moment, still within

1.56 standard deviations of its observed value, corresponds to the idiosyncratic holding period return

variance for properties purchased during a contraction and sold one year later in an expansion. Of the

remaining 30 moments, the model is able to fit 27 within one standard deviation. As seen in Table 6,

the model captures both pricing attributes (the average trend-adjusted cap rate in each regime), and

transaction dynamics (turnover statistics).

Figure 2 demonstrates that the model quantitatively explains the “anomalous” risk and return

patterns in holding-period returns. For the three holding period categories used in the calibration,

the figure plots estimates of holding period returns net of market and year fixed effects (circles) against

model predictions (solid lines). Larger red circles denote the eighteen calibration target return moments.

At every horizon and combination of states, the model prediction is within the 95% confidence interval

of the empirical estimates (vertical dashed lines) for both targeted and non-targeted moments.
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(c) Properties purchased in contraction states and sold in expansion states

Fig. 2: Holding period idiosyncratic variances (σ2) and means (α) for different repeat sale regime categories.
The dashed lines correspond to 95% confidence intervals from the NCREIF panel. The continuous thick
line corresponds to the calibrated model predictions. Larger red points denote return moments used in
the calibration (a total of 18). Because only six properties are purchased and sold in contraction states,
the corresponding confidence intervals are too large to convey a meaningful sense of fit and plots for this
regime category are not depicted. 35
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Figure 3 demonstrates that the model can also produce realistic transaction heterogeneity in the form

of model-versus-actual Sale-Appraisal Ratio distributions. Right tail transactions leading to positive

skewness are well-captured, but details of the left tail are only coarsely reproduced. This might be

addressed by allowing the jump diffusion to the middle type to instead be distributed across a wider

spectrum of types below the middle. The extreme left tail is entirely absorbed by the distress shock and

distributing its outcome more finely would likewise improve the fit to data.

Sale-appraisal ratio

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Data
Model

Fig. 3: Cumulative distribution of the Sale-Appraisal Ratio. The dashed line corresponds to transactions
in the NCREIF data that are preceded, one quarter earlier, by independent appraisals. The solid line is
the corresponding calculation from the calibrated model.

The calibrated type transition parameters determine the dynamics of an investor’s rank, relative to

other investors, in terms of her growth-adjusted discount rate. The ηa,s’s, determine the level of each

rank. Jointly, these parameters define the distributions of bidders and owners in the steady state. To

understand the key factors determining these parameters, first consider that if types do not transition,

then all properties would eventually be owned by the highest valuation type. Correspondingly, without

the jump transition component, persistence in the type diffusion concentrates ownership among high-

valuation types. This, however, leads to negatively skewed transaction prices, inconsistent with data.
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Adding the jump component ensures non-negligible middle-type ownership in the steady-state through

a constant flow of owners who transition directly from high-valuation types. Fitting to low turnover and

positive transaction price skewness, in this case, requires that above-middle type arrival is infrequent.

Symmetry of the transition process subsequently forces below-middle type arrival to also be infrequent.38

This suggests that, in fitting to the data, type arrival will concentrate around the middle rank.

Type transitions in the calibration are indeed found to be highly persistent, just as implied by the

discussion in Section 3.3. Consistent with the argument above, the jump component is significant and

the arrival distribution is concentrated around the middle type in both states. Although an expansion

is characterized by a small jump component (about 1.25% per quarter), a randomly arriving investor

is middle-type with 91% chance, and will be no more than three types away from the middle with

99.57% probability. During a contraction, the diffusion parameter is completely shut off (x(cnt) = 0)

but the jump component is substantial (27.6% chance per quarter of shifting to the middle type). This

further concentrates arrivals around the middle: A bid has a 98% chance of being middle-type and will

be no more than one type away from the middle with 99.51% probability. The dramatic increase in

concentration is needed to account for the large decline in transactions during a contraction.39

During contractions, the calibrated middle investor ηa,cnt is 1.021, with the two nearest types at

1.017 and 1.027. During an expansion, the middle ηa,exp is 1.018, with the six nearest types ranging

from 1.006 to 1.025. Thus in moving from contraction to expansion, investors’ growth-adjusted discount

rates shift to the left and mass is redistributed to the tails.40 To depict this graphically, I look for a

continuous distribution that can be partitioned into “bins” so that both the bin masses and their means

fit the point-mass distribution of ηa,s’s with respect to πU (s). Figure 4 plots the best-fitting log-Johnson

(1949) distribution to the calibrated investor types in the expansion and contraction regimes.41 Bins

associated with distinct investor types are alternately shaded to assist with visualization, and the middle

investor type bin is labeled as such. Save for the extreme left tail in the expansion regime, which is

38Recall that bid arrivals are determined by πU , the unconditional distribution of types derived from the transition process.
Symmetry in the transition process about the middle type results in symmetry in the bid arrival distribution.

39It is possible, without meaningfully changing the model results, to “rig” some of the below-middle types and their transition
dynamics in order to distribute mass away from the middle type in the bid arrival distribution. I take the view that, absent
bidding data to guide the exercise, the value of such a re-parameterization would primarily be aesthetic.

40Although the distribution of types is symmetric, the distribution of ηa,s’s assigned to the types is not. That’s because
ηa,s’s are assigned to types based on the quantiles of a log-normal (skewed) distribution rather than uniformly.

41The Johnson (1949) distribution is a flexible four-parameter generalization of the Normal distribution.
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(a) Expansion state

(b) Contraction state

Fig. 4: Continuous histogram representation of the distributions of growth-adjusted capitalization factors, ηa,s,

in the calibrated model based on the estimated parameters. Types in the model are discrete and represented by

the alternating shaded bins in the plotted distribution. The middle bin of 21 types is explicitly denoted. The

unconditional mass, πUa (s), corresponding to the random arrival of an investor of type a, is the area within each bin.

The (discrete) value ηa,s in each bin corresponds to the bin mean.
38
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(a) Expansion state

(b) Contraction state

Fig. 5: Continuous histogram representation of the distributions of steady state ownership in the calibrated model, as

a function of the owners’ private valuation (measured as a cap rate). Types in the model are discrete and represented

by the alternating shaded bins in the plotted distribution. The middle bin of 21 types is explicitly denoted. The area

within each bin is the share of the property market owned by the corresponds type. The (discrete) private valuation

of associated with each type corresponds to the bin mean.
39
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barely discernible, the bin masses and means provide a faithful rendering of how bids are allocated in

the two regimes. As one might expect, the distribution of capitalization factors during contractions

first-order stochastically dominates the distribution during expansions.

The distributions of the ηa,s’s in Figure 4 depict model arrival probabilities of the different buyer

types and are therefore key drivers of transaction dynamics. Another key driver, depicted in Figure 5,

is the distribution of owners’ valuations in the steady state (expressed as cap rates). Here too I employ

a binned continuous distribution where bin masses and their means fit the steady state point-mass

distribution of ownership. As explained earlier, the jump transition component leads to substantial

steady-state ownership by middle-valuation types. Because arrivals of high-valuation bids are rare,

transaction prices are positively skewed. Relatedly, the arrival rate of middle-type investors is high in

both regimes and this prevents types with above-middle cap rates from owning a meaningful share of

the property market.

Owners’ types and private valuations change dramatically in moving from expansion to contraction.

The jump-transition results in a doubling of middle-type steady-state ownership, from 41% to 86%,

and serves to “level the field” among investors. A typical owner’s valuation likewise shifts from an

expansion average cap rate of 5.77% to a contraction average of 6.61%. The only reason that the shift

is not greater is the relatively short durations of contractions, averaging roughly 2.5 years. Were an

owner forever “stuck” in a contraction as a middle type, (s)he would have a private valuation cap rate

of roughly 4× (ηmid,cnt − 1) ≈ 8.4%. With the substantial resetting of types during a contraction, one

might expect a high turnover of properties. Instead, as documented in Table 6, the turnover declines

by nearly a third. This is because the shifting of owner types to the middle during a contraction is

accompanied by a factor of four reduction in the arrival rate of offers acceptable to middle-types.

5 Model Implications: Illiquidity and Transaction Risk

In the limit of a liquid property market (e.g., c = 0 and ra = r for all investors), property transaction

prices are consistent with a dividend-discount model and the per-period income-to-price ratio, or cap

rate, is objective and constant at 1
Q = η− 1 = er−µ − 1. In the presence of illiquidity, there is no single
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“fundamental” price. Instead, the price is probabilistically distributed in a manner that depends on

investors’ and owners’ private valuations. This distribution drives transaction risk in the model and the

calibration to the repeat sales data allows one to quantify it. In this subsection I characterize model

transaction risk in several ways: The likelihood of selling within a given period, the time required to

sell, and the price of immediacy. Finally, I turn to the related topic of distressed sales.

5.1 Transaction risk

For each macro state, Figure 6(a) plots a hypothetical probability distribution that a non-distressed

owner will receive a satisfactory bid within a quarter, given their reservation cap rate gross of costs.

Although I do not have bidding data to help validate the predicted distributions, the plots still serve

to illustrate the power of the model to link to quantities that are, in principle, observable. To produce

the plots using the calibrated model parameters, a discrete distribution is first calculated using the

equilibrium solution to the Qa,s’s and the probability πUa (s) of bid arrivals. This is then extrapolated

to a continuous log-Johnson distribution, as with Figures 4 and 5.42

For comparison, Figure 6(a) also plots the transaction probability for a perfectly liquid asset whose

annualized income to price ratio coincides with the market average of adjusted non-distressed acquisition

cap rates (5.95% in an expansion and 6.54% in a contraction). For a perfectly liquid asset, an above-

market offer to sell would be instantly transacted with probability one, while an offer below-market

would never be transacted. Transaction risk appears to be substantial and skewed towards lower cap

rates (or higher prices). In an expansion, the probability of transacting at a “fair market” cap rate

or better is in the neighborhood of 10% per quarter. The corresponding probability in a contraction

is lower and corresponds to a more than a 10% reduction in price. The key message is that owners

with a high cost of capital must be willing to accept below-market prices in order to transact with high

probability. Another takeaway is that the dispersion in potential bids can be lower in a contraction,

which in the model calibration happens because bidder discount rates are “squeezed” relative to the

expansion state (see Figure 4).43

42In extrapolating to the continuum, I am assuming that a supporting transition process exists.
43The are too few transactions during contraction quarters to definitively confirm a decline in transaction dispersion. While

the quarterly standard deviation of the Sale-Appraisal Ratio does decline during contractions, the difference is not statistically
significant.
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(a) Quarterly transaction risk in the expansion and contraction regimes

(b) Comparison of transaction risk in the expansion regime for various horizons

Fig. 6: Transaction Risk in Commercial Real Estate Properties. The top plot depicts the regime-dependent
probability of transacting a non-distressed asset within one quarter as a function of the seller’s reservation
income-to-price ratio (i.e., “cap rate”). Each step function corresponds to a perfectly liquid asset with
the same expected transaction income-to-price ratio as its non-distressed illiquid market counterpart. The
bottom plot depicts the transaction probability over varying horizons, assuming the property market is
currently in an expansion state.
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Figure 6(b) illustrates how transaction risk changes with selling horizon, assuming that the current

macro state is expansionary. As the selling horizon increases from one quarter to two years, the proba-

bility of transacting at a “fair” market cap rate of 5.95% increases. A longer selling horizon effectively

deepens the market by allowing a greater number of offers to be entertained, thereby substituting for

an instantaneous auction mechanism.

5.2 Time to sell.

Consider an owner with reservation cap rate cr in state st. Figure 6(a) depicts p(cr, st), the probability

that this owner will sell in the current quarter. From this, one can calculate the expected and median

times to sell a property, conditional on a reservation cap rate. For an owner with a fixed reservation cap

rate, the arrival of a satisfactory bid is a serially independent event. If the state of the economy does not

change, then the expected and median times to sell (in years) are 1
4p(cr) and ln .5

4 ln(1−p(cr)) , respectively.

Related, though more complicated, expressions apply when p(cr, st) is state dependent.

Figures 7(a) and (b) plot the mean and median times to sell given the seller’s reservation cap rate in

the two states. All of the curves are calculated from the continuous per-period non-distressed transaction

likelihoods, p(cr, st), depicted in Figure 6(a), and account for potential macro state transitions. Also

plotted, and corresponding to the right vertical axis, is the expected transaction cap rate for a seller,

given their reservation cap rate. Note that the expected transaction cap rates are necessarily smaller

than their corresponding reservation cap rates. Thus patient sellers can trade immediacy in favor of

higher expected transaction prices.

The shaded region identifies reservation cap rates that result in non-distressed expected transactions

(right vertical axis) between the model’s unconditional transaction mean (6.03%) and the transaction

mean conditional on the regime (5.95% in an expansion and 6.54% in a contraction). Achieving a target

average transaction price in this range during an expansion amounts to setting the reservation price

roughly 4% below the target. This potential discount is offset by the high premia that some buyers

might be willing to pay. In other words, during an expansion a CRE portfolio manager targeting an

average performance level can be fairly tolerant of dispositions by as much as 4% below market because

(s)he knows that some properties will transact above market. Such tolerance roughly corresponds to
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(a) Expansion state
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(b) Contraction state

Fig. 7: The blue circles and red ×’s respectively trace the mean and median times to sell (left vertical
axis) given a non-distressed seller’s reservation cap rate. The thick black line plots the corresponding
expected transaction cap rate for non-distressed properties (right vertical axis). The shaded region denotes
reservation cap rates that are expected to transact between the unconditional transaction cap rate mean
and the mean conditional on the current state (expansion/contraction) of the non-distressed property
market.
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an expected (median) time on market of one year (six months). Greater patience is needed during

a downturn to obtain the same performance as during an expansion: An expected transaction at the

unconditional mean requires setting an aggressive reservation cap rate of 6.27%, associated with an

expected time on market of over three years. On the other hand, sellers willing to part with their

property a couple percentage points below prevailing contraction prices can expect to sell within a

year.44

Although the NCREIF data does not report time to sell, such data is occasionally available elsewhere.

For example, CoStar reports average “days on market” varying from 250 in January 2007 to as high

as 450 in July 2012, and then coming back down to 284 as of November 2016. Because about a third

of listings are withdrawn, the CoStar estimates are significantly biased down. In addition, it is not

clear how one might translate from the listing data to reservation cap rates. Still, given that the overall

magnitudes reported by CoStar are roughly consistent with the model-implied time on market, one might

anticipate that the model could be extended to fit detailed data on the listing and bidding process.

5.3 The need for immediacy

Yet another measure of property market illiquidity that can be inferred from the model is the “price

of immediacy”. I define a seller to have a need for immediacy of q/4 years whenever the seller must

liquidate a position within q quarters. The corresponding price of immediacy is the discount relative to

prevailing market prices that the seller expects to experience. I calculate this quantity as follows. Let

Q(0) ≡ 0 and recursively define for n ≥ 1,

Q(n)
s = E

[
{Q̃,Q(n−1)}+

]
=
∑
a∈A
s′∈S

(ΠS)ss′π
U
a (s′){Qa, Q(n−1)

s′ }+.

Then Q
(1)
s is just the expected price to income ratio in macro state s if a seller must liquidate in one

period. One can interpret Q
(2)
s as the expected transaction price for a two-period strategy in which one

sells in the first period only if a bid higher than Q(1) arrives; otherwise, the first-period bid is ignored and

one accepts whatever bid comes along in the second period. A similar interpretation applies for n > 2.

44The hump shape in Figure 7(b) reflects that offers below a 6.5% cap rate are unlikely to arrive until after the contraction
ends. Time on market steeply declines above 6.5% because such offers are likely to arrive during a contraction.
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There is no time (or risk) discounting in this calculation because discount factors are heterogeneous in

the model and thus there is no objective strategy for accepting or rejecting a bid. Also ignored in this

calculation are distressed sales and transaction costs.

Fig. 8: An owner is said to have a need for immediacy of y years if (s)he must sell the property within y
years. The graph depicts the discount relative to prevailing transaction prices that the seller expects to
experience if using the disposition strategy described in Section 5.3. The possibility of a distressed sale is
not incorporated into the discount in the plot.

The price of immediacy is defined as 1 − Q(n)
s

Q∗ , where Q∗ is the unconditional mean transaction

price in the model. Figure 8 plots this for the continuous transaction probability distribution function,

p(cr, st), in Figure 6. A seller can expect to experience a discount to average transactions if (s)he must

liquidate within two (five) years during a market expansion (contraction). Given more flexibility to

“wait out the market”, a seller can expect to perform at least as well as average prevailing transactions.

The closed-end private equity fund structure, frequently used by commercial real estate investors,

commits the general partner to liquidate the portfolio by a certain date. It is quite common, however,

for the general partner to exercise a one to two year option to wait out the market (Marra, Sagi, and

Shaw, 2018). Such options ostensibly protect both the general partner and more patient limited partners

from pressured sales by allowing for an “orderly liquidation”. The plots in Figure 8 indicate that these
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options are valuable for the portfolio of remaining properties in the last year of a closed-end fund’s legal

term. During an expansion, exercising an extension option in the fund’s penultimate year can eliminate

the expected discount from pressured liquidation. Doing the same in a downturn nearly halves the

expected discount.

5.4 Distressed sales

The analysis in the previous subsection does not incorporate distressed sales or what might be interpreted

as an “extreme” need for immediacy. In the empirical Sale-Appraisal Ratio of Figure 3, roughly 3% of

sales transact at more than a 20% discount to appraised value. In the calibrated model, this left tail is

captured by allowing properties to enter into distress. It is instructive to explore the data for further

insights into the sources of property distress.

Out of 75 distinct funds reporting to the NCREIF in the sample used for calibration, only 10

reported a total of 46 sales that fell below 80% of appraisal value for properties that were held for at

least two years. Two thirds of these sales correspond to three distinct institutions, and ninety percent

to institutions that sold at least two properties at a steep discount. Only 11 of the “distressed” sales

corresponded to properties levered beyond 65%, and only one institution’s distressed sales were all highly

levered. The fact that leverage does not appear to drive extreme discounts is consistent with Genesove

and Mayer (1997). The clustering of distressed sales across owners is accompanied by clustering in time,

evidenced by the fact that 25 of the 46 sales involved more than one property in a single quarter by a

single institution. The significant degree of clustering is consistent with heterogeneity in liquidity needs

across institutions and time, which is the main mechanism in the model. All but one of the sales were

by a private equity open-end fund, suggesting that redemption pressures forced liquidation. The latter

conjecture is further supported by the fact that half of the sales took place either during the Great

Financial Crisis or in the period 2015Q3-2016Q3 when private real estate open-end funds experienced

heavy redemption pressures.45

All of the funds affected by distressed liquidation and discussed above were ongoing as of 2017Q2,

and in possession of substantial holdings (median of $13B). Thus, among NCREIF open-end funds,

45See https://goo.gl/21WpQd. Some private equity real estate open end funds are required to begin forced liquidation once
the redemption queue exceeds a threshold.
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episodes of distressed asset liquidation are temporary and restricted to a few assets, possibly to meet

rigid contractual requirements. This motivates modeling an episode of distressed liquidation as an asset-

level shock rather than a type-transition. That is because the latter necessitates the liquidation of all

assets that do not produce sufficient near-term cash flows, rather than enough to meet some threshold.

It is worth noting that CRE sales of “real estate owned” (REO, i.e., foreclosed and bank-owned)

properties are associated with an average discount of 34% (see Table 3 in Chu, 2015). In terms of the

magnitude of the discount, REO distressed sale data are roughly consistent with observed distressed

sales in the NCREIF data and in the model. This might suggest a similar disposition mechanism (e.g.,

an auction with little scope for due diligence). A key difference, however, likely arises in the reason

behind such sales. While property management may fall outside the core competency of a bank, making

its management and maintenance of the asset costly, the same is not true for NCREIF member funds.

Indeed, there is only weak evidence that NCREIF properties are sold at steep discounts because they

can no longer be profitably operated by their owners.46 As mentioned earlier, liquidation pressures on

private equity funds (whether closed or open) may come from transient events that trigger fund contract

covenants. By contrast, REO properties create a persistent significant drag on banks’ deployable capital

because of their associated reserve requirements (Ramcharan, 2019). Thus, in extending the model to

incorporate lenders, it might be appropriate to model a bank as an investor with a very high cost of

capital who only acquires properties through foreclosures.

6 Further Discussion

Here I discuss the variety of ways in which the model could be further applied and extended.

Source of valuation heterogeneity and policy implications. The model is currently silent

on the sources of heterogeneity in growth-adjusted discount rates (i.e., the distribution of bids). These

could arise from differences in cost of capital, beliefs, or skill. Indeed, different interpretations have

markedly different policy implications.

46The discount is weakly (but significantly) related to smaller than average properties, a below average rise in market value
since purchase, poor prior year’s returns, and a weak market. The adjusted R2 from a regression of positive discounts on
these variables is about 4.5%.
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In the calibrated model the average steady state transaction price is greater than the highest private

perpetual-hold valuation. This is because a high valuation investor will eventually transition into a lower

valuation investor and being able to sell the asset in that event improves the asset’s current private

value. Under a heterogeneous beliefs story, this is interpreted as a bubble.47 Assuming asset bubbles

are not desirable, the policy cure would be to introduce trading limitations. Under an institutional

friction explanation, the ability to trade the asset can be interpreted as a welfare enhancing function of

markets and policy might strive to enhance rather than restrict trade and liquidity.

In Appendix D.1 I argue that in the NCREIF context, the institutional friction story may be more

compelling. That, however, may not be true in a broader context or with different data, and modeling

the sources of heterogeneity may shed additional light on important policy questions. Such an exercise

may well require endogenizing entry in the model (esp. of intermediaries) in the presence of time-varying

capital constraints or other instruments of policy.

Improving realism and parameter identification. Detailed bidding data would help inform

estimation and refinements of the model. For instance, one could incorporate the possibility of multiple

bids as discussed in Section 3.1 or recast the model in continuous time. One could also hope to have

direct measures of investor type transitions or the determinants of bargaining power (e.g., competition).

The current calibration exhibits “nearby” parameter sets that also fit the data well but have significantly

different implications for transaction risk and the distribution of bids. Bidding data could help better

identify the deep model parameters and, importantly, improve the quantification of transaction risk

discussed in Section 5.

Repeat sales index methodology. Francke (2018) finds that applying the repeat sales methodol-

ogy (e.g., Calhoun, 1996) to distinct data subsamples, categorized by holding period, leads to substantial

differences across the resulting indices: An index constructed using properties held over short periods

exhibits greater average growth than an index constructed from properties held over a longer period.

His findings raise the concern that changes in the index could result from a different mix of holding

47One could recast my model as a variant of Scheinkman and Xiong (2003) that includes “intermediate belief” types as well
as random matching and bargaining.
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period returns rather than changes to a fundamental factor. This issue is likely to also impact Ang,

Chen, Goetzmann, and Phalippou (2018) who apply a sophisticated Bayesian version of the repeat sales

index methodology to filter aggregate influences from sparse data.

The model of Section 3 exhibits a selection bias that leads to a similar pattern as that identified

by Francke (2018). Thus the model also holds the promise of enabling econometricians to undo the

selection bias and infer a more representative repeat sales market index. To do this in principle, one

can incorporate the factor structure employed in Ang, Chen, Goetzmann, and Phalippou (2018) into

µt+j in Eq. (6) and augment their Bayesian approach to structurally estimate an equilibrium model of

transactions (such as the one offered here).

Additional Applications. It is clear that transaction risk carries important implications for mort-

gage and real estate derivative pricing. A model of transaction risk may similarly be useful in studying

optimal contracting for skilled managers, including compensation and liquidation restrictions. Relatedly,

it may be used to identify or develop performance metrics on which such contracts are based.

Although the NCREIF dataset lacks sufficient depth to finely resolve transaction risk by geography

and asset type (see Appendix D.2), a more comprehensive dataset could be used to study cross-sectional

attributes and dynamics (e.g., liquidity spillovers).

Finally, a model of market transaction risk could be employed to quantify banks’ effective cost of

capital for high reserve requirement assets (Ramcharan, 2019). This, accompanied with loan data and

a model of mortgage pricing (that incorporates transaction risk for both borrower and lender) can

potentially be used to estimate a lender’s actual cost of capital.

7 Conclusions

Real estate risk is different from the risk of liquid traded assets. Though this may seem self-evident,

quantifying the risk of individual real estate assets has been left relatively unexplored in the literature.

Using purchase and sale data from the National Council of Real Estate Investment Fiduciaries (NCREIF)

to compute and analyze holding period returns for commercial properties, I find that the data is not

consistent with the standard asset pricing assumption of a random walk with drift in log-returns. This
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conclusion is robust to controlling for all cash flow events, as well as heterogeneity in random walk

parameters across time and across properties.

The data is consistent, however, with a calibrated search-based illiquid asset pricing model. In the

model, owners periodically receive bids for their property from investors but gains from trade only exist

if the valuation of bidders (net of transaction costs) exceeds that of owners. Holding period returns

therefore exhibit transactional shocks that arise from the random matching and bargaining, and are

nearly unrelated to the duration of the holding period (i.e., they are atemporal). If private valuations

are persistent, observed short horizon holding periods in equilibrium will exhibit a positive “alpha”

through selection bias: A short hold will only be observed when an owner is lucky enough to receive a

bid significantly higher than the price (s)he recently paid for the property. This is consistent with the

data and requires the significant presence of intermediate valuation investors. Both the model and the

data imply that idiosyncratic property risk comes in two forms: a diffusion variance component similar

to that exhibited by liquid assets measuring roughly 1% per year (annualized); and a purchasing/selling

shock that, in a single optimal transaction, has a variance between 1% and 2%. Thus round-trip observed

transaction returns exhibit a substantial “time-independent” variance component between 2% and 4%

that arises from illiquidity rather than a missing variable (e.g., capital investment).

Some key takeaways are that (i) repeat transaction data, corresponding to the only available asset-

specific return data for highly illiquid assets, inherently exhibit considerable selection bias, and (ii)

transaction risk comprises a substantial portion of asset variance, and may be important to consider

in any model of derivative (e.g., mortgage) pricing, portfolio choice, and delegated asset management.

The model can be applied to the pricing of real estate derivative instruments such as debt or mortgage

backed securities. It can also be extended to other illiquid assets, such as whole loans, private equity

deals, or other real assets.
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Duffie, D., N. Gârleanu, and L. H. Pedersen, 2005, “Over-the-Counter Markets,” Econometrica, 73(6),

1815–1847.

, 2007, “Valuation in Over-the-Counter Markets,” Review of Financial Studies, 20(6), 1865–1900.

Fisher, J., D. Gatzlaff, D. Geltner, and D. Haurin, 2003, “Controlling for the impact of variable liquidity

in commercial real estate price indices,” Real Estate Economics, 31(2), 269–303.

Francke, M., 2018, “The Role of Holding Periods in Repeat Sales Models,” working paper, European

Real Estate Society (ERES).

Garriga, C., and A. Hedlund, 2017, “Mortgage debt, consumption, and illiquid housing markets in the

great recession,” FRB St. Louis Working Paper, (2017-30).

Geltner, D., N. Miller, J. Clayton, and P. Eichholtz, 2013, Commercial Real Estate Analysis and Invest-

ments. OnCourse Learning, 3rd edn.

Genesove, D., and L. Han, 2012, “Search and matching in the housing market,” Journal of Urban

Economics, 72(1), 31–45.

53

Electronic copy available at: https://ssrn.com/abstract=2596156



Genesove, D., and C. J. Mayer, 1997, “Equity and time to sale in the real estate market,” working

paper 3.

Giacoletti, M., 2017, “Idiosyncratic risk in housing markets,” .

Goetzmann, W. N., 1993, “The single family home in the investment portfolio,” The Journal of Real

Estate Finance and Economics, 6(3), 201–222.

Goetzmann, W. N., and M. Spiegel, 1995, “Non-temporal components of residential real estate appre-

ciation,” The Review of Economics and Statistics, pp. 199–206.

Han, L., and W. C. Strange, 2015, “The microstructure of housing markets: Search, bargaining, and

brokerage,” in Handbook of regional and urban economics. Elsevier, vol. 5, pp. 813–886.

Head, A., and H. Lloyd-Ellis, 2012, “Housing liquidity, mobility, and the labour market,” Review of

Economic Studies, 79(4), 1559–1589.

Head, A., H. Lloyd-Ellis, and H. Sun, 2014, “Search, liquidity, and the dynamics of house prices and

construction,” American Economic Review, 104(4), 1172–1210.

Hedlund, A., 2016a, “The cyclical dynamics of illiquid housing, debt, and foreclosures,” Quantitative

Economics, 7(1), 289–328.

, 2016b, “Illiquidity and its discontents: Trading delays and foreclosures in the housing market,”

Journal of Monetary Economics, 83, 1–13.

Hugonnier, J., B. Lester, and P.-O. Weill, 2018, “Frictional Intermediation in Over-the-counter Markets,”

Working Paper 24956, National Bureau of Economic Research.

Johnson, N. L., 1949, “Systems of Frequency Curves Generated by Methods of Translation,” Biometrika,

36(1/2), 149–176.

Krainer, J., 2001, “A theory of liquidity in residential real estate markets,” Journal of urban Economics,

49(1), 32–53.

54

Electronic copy available at: https://ssrn.com/abstract=2596156



Krainer, J., and S. F. LeRoy, 2002, “Equilibrium valuation of illiquid assets,” Economic Theory, 19(2),

223–242.

Lagos, R., and G. Rocheteau, 2009, “Liquidity in asset markets with search frictions,” Econometrica,

77(2), 403–426.

Lopez-de Silanes, F., L. Phalippou, and O. Gottschalg, 2015, “Giants at the gate: Investment returns

and diseconomies of scale in private equity,” Journal of Financial and Quantitative Analysis, 50(3),

377–411.

Lovo, S., and C. Spaenjers, 2018, “A Model of Trading in the Art Market,” American Economic Review,

108(3), 744–74.

Marra, H., J. Sagi, and I. Shaw, 2018, “A Glimpse into the Afterlife: An Investigation into Private Real

Estate Fund Legal Duration, Extensions, and Liquidation,” Institutional Real Estate, 30(9).

McQuade, T., A. Guren, et al., 2015, “How Do Foreclosures Exacerbate Housing Downturns?,” in 2015

Meeting papers, no. 40. Society for Economic Dynamics.

Ngai, L. R., and S. Tenreyro, 2014, “Hot and cold seasons in the housing market,” American Economic

Review, 104(12), 3991–4026.

Novy-Marx, R., 2009, “Hot and cold markets,” Real Estate Economics, 37(1), 1–22.

Peng, L., 2016, “The risk and return of commercial real estate: A property level analysis,” Real Estate

Economics, 44(3), 555–583.

Plazzi, A., W. Torous, and R. Valkanov, 2008, “The Cross-Sectional Dispersion of Commercial Real Es-

tate Returns and Rent Growth: Time Variation and Economic Fluctuations,” Real Estate Economics,

36(3), 403–439.

Ramcharan, R., 2019, “Banks’ Balance Sheets and Liquidation Values: Evidence from Real Estate

Collateral,” The Review of Financial Studies.

55

Electronic copy available at: https://ssrn.com/abstract=2596156



Scheinkman, J. A., and W. Xiong, 2003, “Overconfidence and speculative bubbles,” Journal of political

Economy, 111(6), 1183–1220.

Wheaton, W. C., 1990, “Vacancy, search, and prices in a housing market matching model,” Journal of

Political Economy, 98(6), 1270–1292.

Williams, J. T., 1993, “Equilibrium and options on real assets,” The Review of Financial Studies, 6(4),

825–850.

, 1995, “Pricing real assets with costly search,” The review of financial studies, 8(1), 55–90.

56

Electronic copy available at: https://ssrn.com/abstract=2596156


